Spectroscopic Imaging with an Ultra-Broadband (1–4 THz) Compact Terahertz Difference-Frequency Generation Source
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97. [Google Scholar] [CrossRef]
- Dhillon, S.S.; Vitiello, M.S.; Linfield, E.H.; Davies, A.G.; Hoffmann, M.C.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G.P.; et al. The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 2017, 50, 1–49. [Google Scholar] [CrossRef]
- Yun, J.; Oh, S.J.; Song, K.; Yoon, D.; Son, H.Y.; Choi, Y.; Huh, Y.M.; Rieh, J.S. Terahertz Reflection-Mode Biological Imaging Based on InP HBT Source and Detector. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 274–283. [Google Scholar] [CrossRef]
- Kanda, N.; Konishi, K.; Nemoto, N.; Midorikawa, K.; Kuwata-Gonokami, M. Real-time broadband terahertz spectroscopic imaging by using a high-sensitivity terahertz camera. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Cui, Z.; Cheng, B.; Qin, Y.; Deng, X.; Deng, B.; Li, X.; Wang, H. Fast Three-Dimensional Image Reconstruction of a Standoff Screening System in the Terahertz Regime. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 38–51. [Google Scholar] [CrossRef]
- Busch, S.; Probst, T.; Schwerdtfeger, M.; Dietz, R.; Palaci, J.; Koch, M. Terahertz transceiver concept. Opt. Express 2014, 22, 16841–16846. [Google Scholar] [CrossRef]
- Okano, M.; Watanabe, S. Anisotropic optical response of optically opaque elastomers with conductive fillers as revealed by terahertz polarization spectroscopy. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
- Okano, M.; Watanabe, S. Internal Status of Visibly Opaque Black Rubbers Investigated by Terahertz Polarization Spectroscopy: Fundamentals and Applications. Polymers 2019, 11, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okano, M.; Watanabe, S. Inspection of internal filler alignment in visibly opaque carbon-black–rubber composites by terahertz polarization spectroscopy in reflection mode. Polym. Test. 2018, 72, 196–201. [Google Scholar] [CrossRef]
- Dandolo, C.L.K.; Guillet, J.P.; Ma, X.; Fauquet, F.; Roux, M.; Mounaix, P. Terahertz frequency modulated continuous wave imaging advanced data processing for art painting analysis. Opt. Express 2018, 26, 5358–5367. [Google Scholar] [CrossRef] [PubMed]
- Dandolo, C.L.K.; Lopez, M.; Fukunaga, K.; Ueno, Y.; Pillay, R.; Giovannacci, D.; Du, Y.L.; Bai, X.; Menu, M.; Detalle, V. Toward a multimodal fusion of layered cultural object images: Complementarity of optical coherence tomography and terahertz time-domain imaging in the heritage field. Appl. Opt. 2019, 58, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
- Cassar, Q.; Koch-Dandolo, C.L.; Guillet, J.P.; Roux, M.; Fauquet, F.; Perraud, J.B.; Mounaix, P. Characterization of Varnish Ageing and its Consequences on Terahertz Imagery: Demonstration on a Painting Presumed of the French Renaissance. J. Infrared Millimeter Terahertz Waves 2020, 41, 1556–1566. [Google Scholar] [CrossRef]
- Olivieri, L.; Gongora, J.S.T.; Peters, L.; Cecconi, V.; Cutrona, A.; Tunesi, J.; Tucker, R.; Pasquazi, A.; Peccianti, M. Hyperspectral terahertz microscopy via nonlinear ghost imaging. Optica 2020, 7, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Sakai, H.; Kawase, K.; Murate, K. Highly sensitive multi-stage terahertz parametric detector. Opt. Lett. 2020, 45, 3905–3908. [Google Scholar] [CrossRef]
- Bauer, M.; Venckevicius, R.; Kasalynas, I.; Boppel, S.; Mundt, M.; Minkevicius, L.; Lisauskas, A.; Valusis, G.; Krozer, V.; Roskos, H.G. Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 4.25 THz. Opt. Express 2014, 22, 19235–19241. [Google Scholar] [CrossRef]
- Martin-Mateos, P.; Cibiraite-Lukenskiene, D.; Barreiro, R.; de Dios, C.; Lisauskas, A.; Krozer, V.; Acedo, P. Hyperspectral terahertz imaging with electro-optic dual combs and a FET-based detector. Sci. Rep. 2020, 10, 14429. [Google Scholar] [CrossRef]
- Kasalynas, I.; Venckevicius, R.; Minkevicius, L.; Sesek, A.; Wahaia, F.; Tamosiunas, V.; Voisiat, B.; Seliuta, D.; Valusis, G.; Svigelj, A.; et al. Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues. Sensors 2016, 16, 432. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, T.; Zhang, S.; Shi, Z.; Chen, Y.; Wan, W.; Li, X.; Chen, X.; Gilbert Corder, S.N.; Fu, Z.; et al. Multicolor T-Ray Imaging Using Multispectral Metamaterials. Adv. Sci. 2018, 5. [Google Scholar] [CrossRef]
- Rösch, M.; Beck, M.; Süess, M.J.; Bachmann, D.; Unterrainer, K.; Faist, J.; Scalari, G. Heterogeneous terahertz quantum cascade lasers exceeding 1.9 THz spectral bandwidth and featuring dual comb operation. Nanophotonics 2018, 7, 237–242. [Google Scholar] [CrossRef]
- Rösch, M.; Scalari, G.; Beck, M.; Faist, J. Octave-spanning semiconductor laser. Nat. Photonics 2014, 9, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Belkin, M.A.; Capasso, F.; Belyanin, A.; Sivco, D.L.; Cho, A.Y.; Oakley, D.C.; Vineis, C.J.; Turner, G.W. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nat. Photonics 2007, 1, 288–292. [Google Scholar] [CrossRef]
- Belkin, M.A.; Capasso, F. New frontiers in quantum cascade lasers: High performance room temperature terahertz sources. Phys. Scr. 2015, 90. [Google Scholar] [CrossRef]
- Lu, Q.; Razeghi, M. Recent Advances in Room Temperature, High-Power Terahertz Quantum Cascade Laser Sources Based on Difference-Frequency Generation. Photonics 2016, 3, 42. [Google Scholar] [CrossRef]
- Fujita, K.; Jung, S.; Jiang, Y.; Kim, J.H.; Nakanishi, A.; Ito, A.; Hitaka, M.; Edamura, T.; Belkin, M.A. Recent progress in terahertz difference-frequency quantum cascade laser sources. Nanophotonics 2018, 7, 1795–1817. [Google Scholar] [CrossRef]
- Fujita, K.; Hayashi, S.; Ito, A.; Hitaka, M.; Dougakiuchi, T. Sub-terahertz and terahertz generation in long-wavelength quantum cascade lasers. Nanophotonics 2019, 8, 2235–2241. [Google Scholar] [CrossRef]
- Carnio, B.N.; Elezzabi, A.Y. Generation of midinfrared and visible radiation in a multiband phase-matched subwavelength LiNbO3 slab waveguide. J. Opt. Soc. Am. B 2019, 36, 1695–1699. [Google Scholar] [CrossRef]
- Vijayraghavan, K.; Adams, R.W.; Vizbaras, A.; Jang, M.; Grasse, C.; Boehm, G.; Amann, M.C.; Belkin, M.A. Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers. Appl. Phys. Lett. 2012, 100. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K.; Edamura, T.; Furuta, S.; Yamanishi, M. High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design. Appl. Phys. Lett. 2010, 96. [Google Scholar] [CrossRef]
- Fujita, K.; Hitaka, M.; Ito, A.; Edamura, T.; Yamanishi, M.; Jung, S.; Belkin, M.A. Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region. Appl. Phys. Lett. 2015, 106. [Google Scholar] [CrossRef]
- Nakanishi, A.; Fujita, K.; Horita, K.; Takahashi, H. Terahertz imaging with room-temperature terahertz difference-frequency quantum-cascade laser sources. Opt. Express 2019, 27, 1884–1893. [Google Scholar] [CrossRef]
- Fujita, K.; Hitaka, M.; Ito, A.; Yamanishi, M.; Dougakiuchi, T.; Edamura, T. Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation. Opt. Express 2016, 24, 16357–16365. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, A.; Satozono, H.; Fujita, K. Detection of single human hairs with a terahertz nonlinear quantum cascade laser. Appl. Opt. 2020, 59, 9169–9173. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, F.; Mics, Z.; Bonn, M.; Turchinovich, D. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics. Opt. Express 2014, 22, 12475–12485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Yao, H.; Ju, X.; Chen, Y.; Zhong, S.; Wang, X. Free-standing double-layer terahertz band-pass filters fabricated by femtosecond laser micro-machining. Opt. Express 2017, 25, 25125–25134. [Google Scholar] [CrossRef]
- True, A.B.; Schroeck, K.; French, T.A.; Schmuttenmaer, C.A. Terahertz Spectroscopy of Histidine Enantiomers and Polymorphs. J. Infrared Millimeter Terahertz Waves 2010, 32, 691–698. [Google Scholar] [CrossRef]
Frequency | FWHM of Far-Field Pattern (mm) | Divergence Angle (deg.) | ||
---|---|---|---|---|
Slow Axis | Fast Axis | Slow Axis | Fast Axis | |
Without BPF | 29.1 | 18.0 | 27.7 | 17.3 |
2.0 THz | 22.7 | 18.1 | 21.8 | 17.4 |
2.5 THz | 22.5 | 17.4 | 21.6 | 16.8 |
3.0 THz | 30.1 | 16.4 | 28.6 | 15.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakanishi, A.; Hayashi, S.; Satozono, H.; Fujita, K. Spectroscopic Imaging with an Ultra-Broadband (1–4 THz) Compact Terahertz Difference-Frequency Generation Source. Electronics 2021, 10, 336. https://doi.org/10.3390/electronics10030336
Nakanishi A, Hayashi S, Satozono H, Fujita K. Spectroscopic Imaging with an Ultra-Broadband (1–4 THz) Compact Terahertz Difference-Frequency Generation Source. Electronics. 2021; 10(3):336. https://doi.org/10.3390/electronics10030336
Chicago/Turabian StyleNakanishi, Atsushi, Shohei Hayashi, Hiroshi Satozono, and Kazuue Fujita. 2021. "Spectroscopic Imaging with an Ultra-Broadband (1–4 THz) Compact Terahertz Difference-Frequency Generation Source" Electronics 10, no. 3: 336. https://doi.org/10.3390/electronics10030336
APA StyleNakanishi, A., Hayashi, S., Satozono, H., & Fujita, K. (2021). Spectroscopic Imaging with an Ultra-Broadband (1–4 THz) Compact Terahertz Difference-Frequency Generation Source. Electronics, 10(3), 336. https://doi.org/10.3390/electronics10030336