Applications of Terahertz Wave

A special issue of Electronics (ISSN 2079-9292). This special issue belongs to the section "Microwave and Wireless Communications".

Deadline for manuscript submissions: closed (15 May 2021) | Viewed by 6229

Special Issue Editor

Special Issue Information

Dear Colleagues,

After years of development in research laboratories, terahertz waves are now available in robust commercial systems. These compact systems open up an important multidisciplinary field of application associated with signal-processing methods. Within this context, the aim of this Special Issue is to highlight the interdiscplinary applications being done within this range of the electromagnetic spectrum. The covered topics within this Special Issue are (but not limited to) the following:

  • Terahertz spectroscopy;
  • Terahertz systems;
  • Terahertz imaging;
  • Nondestructive testing;
  • Art and heritage;
  • Biomedical applications;
  • In-line production control with terahertz;
  • Communication systems;
  • Terahertz data processing.

Ass. Prof. Dr. Jean-Paul Guillet
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Electronics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 3570 KiB  
Article
Spectroscopic Imaging with an Ultra-Broadband (1–4 THz) Compact Terahertz Difference-Frequency Generation Source
by Atsushi Nakanishi, Shohei Hayashi, Hiroshi Satozono and Kazuue Fujita
Electronics 2021, 10(3), 336; https://doi.org/10.3390/electronics10030336 - 1 Feb 2021
Cited by 5 | Viewed by 2599
Abstract
We demonstrate spectroscopic imaging using a compact ultra-broadband terahertz semiconductor source with a high-power, mid-infrared quantum cascade laser. The electrically pumped monolithic source is based on intra-cavity difference-frequency generation and can be designed to achieve an ultra-broadband multi-mode terahertz emission spectrum extending from [...] Read more.
We demonstrate spectroscopic imaging using a compact ultra-broadband terahertz semiconductor source with a high-power, mid-infrared quantum cascade laser. The electrically pumped monolithic source is based on intra-cavity difference-frequency generation and can be designed to achieve an ultra-broadband multi-mode terahertz emission spectrum extending from 1–4 THz without any external optical setup. Spectroscopic imaging was performed with three frequency bands, 2.0 THz, 2.5 THz and 3.0 THz, and as a result, this imaging technique clearly identified three different tablet components (polyethylene, D-histidine and DL-histidine). This method may be highly suitable for quality monitoring of pharmaceutical materials. Full article
(This article belongs to the Special Issue Applications of Terahertz Wave)
Show Figures

Figure 1

11 pages, 3912 KiB  
Article
Analysis of Terahertz Wave on Increasing Radar Cross Section of 3D Conductive Model
by Hongyao Liu, Panpan Wang, Jiali Wu, Xin Yan, Yangan Zhang and Xia Zhang
Electronics 2021, 10(1), 74; https://doi.org/10.3390/electronics10010074 - 3 Jan 2021
Cited by 7 | Viewed by 2742
Abstract
Enhancing the frequency band of the electromagnetic wave is regarded as an efficient way to solve the communication blackout problem. In this paper, frequency of incident wave is raised to Terahertz (THz) band and the radar cross section (RCS) of the three-dimensional conductive [...] Read more.
Enhancing the frequency band of the electromagnetic wave is regarded as an efficient way to solve the communication blackout problem. In this paper, frequency of incident wave is raised to Terahertz (THz) band and the radar cross section (RCS) of the three-dimensional conductive model is calculated and simulated based on the Runge–Kutta Exponential Time Differencing–Finite Difference Time Domain method (RKETD-FDTD). Interaction of THz wave and magnetized plasma sheath is discussed. Attenuations in incident wave frequencies of 0.34 THz and 3 GHz and different plasma densities are analyzed. The monostatic RCS is used to compare the penetration in different incident wave frequencies while the bistatic RCS is fixed on 0.34 THz to study its characteristics. The simulation result has almost the same RCS as that of the model without coating plasma when the frequency of incident wave reaches 0.34 THz. The advantages of THz wave at 0.34 THz on increasing RCS and reducing the attenuation are demonstrated from different aspects including polarizations, incident angles, magnetization and anisotropy of plasma, thickness of plasma, scan planes and inhomogeneous distribution of plasma. It can be concluded that 0.34 THz has unique advantages in increasing the radar cross section and can be applied to solve the problem of communication interruption. Full article
(This article belongs to the Special Issue Applications of Terahertz Wave)
Show Figures

Figure 1

Back to TopTop