Design of A Parallel Decoding Method for LDPC Code Generated via Primitive Polynomial
Abstract
:1. Introduction
2. Motivation
2.1. LDPC Codes Generated via Primitive Polynomial
2.2. Problem Statement
3. Parallel Decoding Method for m-Sequence Codes
3.1. Construction of Parity-Check Matrices
Algorithm 1: Construction of parity-check matrices for m-sequence code |
Input: A primitive polynomial ; |
A code length n. |
Output: The parity-check matrices . |
1: Begin procedure |
2: Initialize: Let Q be the set of sampling interval, k is the order of , counter . |
3: for do |
4: if then |
5: . |
6: end if |
7: end for |
8: Generate an m-sequence via . |
9: for do |
10: Sample with sampling interval q to get . |
11: . |
12: . |
13: . |
14: end for |
15: return . |
3.2. Parallel Decoding Method with Multiple Sub-Decoders
Algorithm 2: Parallel decoding method |
Input: The LLR value of channel output; |
Maximum iteration number ; |
Basic parity-check matrix ; |
Parity-check matrices . |
Output: The decoding result . |
1: Begin procedure |
2: Initialize: Let S be the set of candidate codewords, is the half of the girth of . |
3: In sub-decoder , . |
4: if then |
5: |
6: end if |
7: for do |
8: In sub-decoder , . |
9: . |
10: if then |
11: . |
12: end if |
13: end for |
14: if then |
15: . |
16: end if |
17: |
18: return. |
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
LDPC | Low Density Parity Check |
BP | Belief Propagation |
MAP | Maximum A Posterior |
LMS | Least Metric Selector |
BER | Bit Error Rate |
SNR | signal-to-noise-ratio |
LFSR | Linear Feedback Shift Register |
MBBP | Multiple-Based Belief Propagation |
RRD | Random Redundant Decoding |
LLR | Log-Likelihood Ratio |
BM | Berlekamp-Messey |
AWGN | Additive White Gaussian Noise |
References
- Zhang, Z.; Zhou, L.; Du, J.; Peng, S. An algebraic approach to design low rate low density parity check code. In Proceedings of the 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 11–13 October 2017. [Google Scholar]
- De Cola, T.; Paolini, E.; Liva, G.; Calzolari, G.P. Reliability Options for Data Communications in the Future Deep-Space Missions. Proc. IEEE 2011, 99, 2056–2074. [Google Scholar] [CrossRef]
- Abughalieh, N.; Steenhaut, K.; Nowé, A. Low power channel coding for Wireless Sensor Networks. In Proceedings of the 2010 17th IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT2010), Enschede, The Netherlands, 24–25 November 2010. [Google Scholar]
- Hu, X.-Y.; Eleftheriou, E.; Arnold, D.M. Regular and irregular progressive edge-growth tanner graphs. IEEE Trans. Inf. Theory 2005, 51, 386–398. [Google Scholar] [CrossRef]
- Hehn, T.; Huber, J.B.; Laendner, S.; Milenkovic, O. Multiple-Bases Belief-Propagation for Decoding of Short Block Codes. In Proceedings of the 2007 IEEE International Symposium on Information Theory, Nice, France, 24–29 June 2007. [Google Scholar]
- Hehn, T.; Huber, J.B.; Milenkovic, O.; Laendner, S. Multiple-bases belief-propagation decoding of high-density cyclic codes. IEEE Trans. Commun. 2010, 58, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hehn, T.; Huber, J.B.; He, P.; Laendner, S. Multiple-Bases Belief-Propagation with Leaking for Decoding of Moderate-Length Block Codes. In Proceedings of the International ITG Conference on Source and Channel Coding, Ulm, Germany, 14–16 January 2008. [Google Scholar]
- Halford, T.R.; Chugg, K.M. Transactions Letters—Random Redundant Iterative Soft-in Soft-out Decoding. IEEE Trans. Commun. 2008, 56, 513–517. [Google Scholar] [CrossRef]
- Dimnik, I.; Berery, Y. Improved random redundant iterative HDPC decoding. IEEE Trans. Commun. 2009, 57, 1982–1985. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Bai, B.; Yang, X.; Li, L.; Yang, Y. Enhancing Iterative Decoding of Cyclic LDPC Codes Using Their Automorphism Groups. IEEE Trans. Commun. 2013, 61, 2128–2137. [Google Scholar] [CrossRef]
- Zhang, K.Q.T. Channel Coding. In Wireless Communications: Principles, Theory and Methodology; Wiley: Hoboken, NJ, USA, 2015; pp. 121–170. [Google Scholar]
- Robert Redinbo, G. Correcting DFT Codes with a Modified Berlekamp-Massey Algorithm and Kalman Recursive Syndrome Extension. IEEE Trans. Comput. 2014, 63, 196–203. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhou, L.; Zhou, Z.H. Design of A Parallel Decoding Method for LDPC Code Generated via Primitive Polynomial. Electronics 2021, 10, 425. https://doi.org/10.3390/electronics10040425
Zhang Z, Zhou L, Zhou ZH. Design of A Parallel Decoding Method for LDPC Code Generated via Primitive Polynomial. Electronics. 2021; 10(4):425. https://doi.org/10.3390/electronics10040425
Chicago/Turabian StyleZhang, Zhe, Liang Zhou, and Zhi Heng Zhou. 2021. "Design of A Parallel Decoding Method for LDPC Code Generated via Primitive Polynomial" Electronics 10, no. 4: 425. https://doi.org/10.3390/electronics10040425
APA StyleZhang, Z., Zhou, L., & Zhou, Z. H. (2021). Design of A Parallel Decoding Method for LDPC Code Generated via Primitive Polynomial. Electronics, 10(4), 425. https://doi.org/10.3390/electronics10040425