EVeREst: Bitrate Adaptation for Cloud VR
Abstract
:1. Introduction
2. Cloud VR System Description and Problem Statement
3. Background in Video Adaptation
4. Algorithm Description
4.1. Bitrate Estimation
Algorithm 1 EVeREst bitrate allocation. |
|
4.2. Link Congestion Estimation
4.2.1. Network Capacity Estimation
4.2.2. Network Throughput Estimation
4.2.3. User Number Estimation
4.3. Bitrate Adaptation
5. Numerical Evaluation
5.1. Scenario
- Number of satisfied sessions: The average number of cloud VR sessions that lost less than of the frames (because of channel errors and frame delay violations).
- Goodput: The total amount of data downloaded in the experiment by cloud VR clients during the satisfied sessions divided by the duration of the experiment.
- Average bitrate: The average bitrate of the VR sessions.
- Frame loss ratio: The average portion of frames lost during the VR session.
- RB usage: The average share of the wireless channel resource blocks utilized during the experiment.
- Bitrate switching frequency: The average number of bitrate changes during the session divided by the session duration.
- CBR, 720p: The video with constant resolution 720p is downloaded independently from the channel state.
- CBR, 1080p: The video with constant resolution 1080p is downloaded independently from the channel state.
- CBR, 1440p: The video with constant resolution 1440p is downloaded independently from the channel state.
- CBR, 2160p: The video with constant resolution 2160p is downloaded independently from the channel state.
- BOLA: The algorithm described in ([55]).
- Xie et al.: The algorithm described in ([56]).
- EVeREst: The algorithm developed in this paper.
5.2. Simulation Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
QoS | Quality of Service |
QoE | Quality of Experience |
HMD | Head-Mounted Display |
MPEG DASH | Moving Pictures Experts Group Dynamic Adaptive Streaming over HTTP |
VR | Virtual Reality |
BS | Base Station |
MEC | Mobile Edge Computing |
UE | User Equipment |
gNB | Next Generation NodeB |
GoP | Group of Frames |
P-frame | Predicted frame |
MTU | Maximum Transmission Unit |
References
- McMahan, R.P.; Bowman, D.A.; Zielinski, D.J.; Brady, R.B. Evaluating display fidelity and interaction fidelity in a virtual reality game. IEEE Trans. Vis. Comput. Graph. 2012, 18, 626–633. [Google Scholar] [CrossRef]
- Sreedhar, K.K.; Aminlou, A.; Hannuksela, M.M.; Gabbouj, M. Viewport-adaptive encoding and streaming of 360-degree video for virtual reality applications. In Proceedings of the 2016 IEEE International Symposium on Multimedia (ISM), San Jose, CA, USA, 11–13 December 2016; pp. 583–586. [Google Scholar]
- Moglia, A.; Ferrari, V.; Morelli, L.; Ferrari, M.; Mosca, F.; Cuschieri, A. A systematic review of virtual reality simulators for robot-assisted surgery. Eur. Urol. 2016, 69, 1065–1080. [Google Scholar] [CrossRef]
- Joda, T.; Gallucci, G.; Wismeijer, D.; Zitzmann, N. Augmented and virtual reality in dental medicine: A systematic review. Comput. Biol. Med. 2019, 108, 93–100. [Google Scholar] [CrossRef]
- Su, P.; Wang, S. Virtual reality practice in architecture design. In Proceedings of the 2012 IEEE Symposium on Electrical & Electronics Engineering (EEESYM), Kuala Lumpur, Malaysia, 24–27 June 2012; pp. 98–101. [Google Scholar]
- Wolfartsberger, J. Analyzing the potential of Virtual Reality for engineering design review. Autom. Constr. 2019, 104, 27–37. [Google Scholar] [CrossRef]
- GSMA. Cloud AR/VR Whitepaper. Technical Report. 2019. Available online: https://www.gsma.com/futurenetworks/wiki/cloud-ar-vr-whitepaper/ (accessed on 8 March 2021).
- Xu, T.; Sun, Y.; Xia, S.; Li, H.; Luo, L.; Chen, Z. Optimal Bandwidth Allocation with Edge Computing for Wireless VR Delivery. In Proceedings of the 2019 IEEE/CIC International Conference on Communications in China (ICCC), Changchun, China, 11–13 August 2019; pp. 903–907. [Google Scholar]
- Zheng, C.; Liu, S.; Huang, Y.; Yang, L. MEC-Enabled Wireless VR Video Service: A Learning-Based Mixed Strategy for Energy-Latency Tradeoff. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea, 6–9 April 2020; pp. 1–6. [Google Scholar]
- Sun, Y.; Chen, Z.; Tao, M.; Liu, H. Communications, caching, and computing for mobile virtual reality: Modeling and tradeoff. IEEE Trans. Commun. 2019, 67, 7573–7586. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Chen, J.; Zhang, Y.; Raychaudhuri, D. Towards efficient edge cloud augmentation for virtual reality mmogs. In Proceedings of the Second ACM/IEEE Symposium on Edge Computing, San Jose, CA, USA, 12–14 October 2017; pp. 1–14. [Google Scholar]
- Huawei. White Paper for 5G Cloud VR Service Experience Standards. Technical Report. 2019. Available online: https://carrier.huawei.com/~/media/CNBGV2/download/products/servies/White-Paper-for-5G-Cloud-VR-Service-Experience-Standards.pdf (accessed on 8 March 2021).
- Gaddam, V.R.; Riegler, M.; Eg, R.; Griwodz, C.; Halvorsen, P. Tiling in interactive panoramic video: Approaches and evaluation. IEEE Trans. Multimed. 2016, 18, 1819–1831. [Google Scholar] [CrossRef]
- Chakareski, J. VR/AR immersive communication: Caching, edge computing, and transmission trade-offs. In Proceedings of the Workshop on Virtual Reality and Augmented Reality Network, Los Angeles, CA, USA, 25 August 2017; pp. 36–41. [Google Scholar]
- MPEG. ISO/IEC ISO/IEC 23090-2:2019 MPEG-I Coded Representation of Immersive Media–Part 2: Omnidirectional Media Format; Technical Report; ISO, Headquarters: Geneva, Switzerland, 2019. [Google Scholar]
- Hooft, J.V.d.; Vega, M.T.; Petrangeli, S.; Wauters, T.; Turck, F.D. Tile-based adaptive streaming for virtual reality video. ACM Trans. Multimedia Comput. Commun. Appl. 2019, 15, 1–24. [Google Scholar] [CrossRef]
- Ghaznavi-Youvalari, R.; Zare, A.; Fang, H.; Aminlou, A.; Xie, Q.; Hannuksela, M.M.; Gabbouj, M. Comparison of HEVC coding schemes for tile-based viewport-adaptive streaming of omnidirectional video. In Proceedings of the 2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP), London, UK, 16–18 October 2017; pp. 1–6. [Google Scholar]
- Liu, X.; Deng, Y. Learning-based Prediction, Rendering and Association Optimization for MEC-enabled Wireless Virtual Reality (VR) Network. arXiv 2020, arXiv:2005.08332. [Google Scholar]
- Zhang, S.; Tao, M.; Chen, Z. Exploiting Caching and Prediction to Promote User Experience for a Real-Time Wireless VR Service. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Big Island, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Vega, M.T.; Liaskos, C.; Abadal, S.; Papapetrou, E.; Jain, A.; Mouhouche, B.; Kalem, G.; Ergüt, S.; Mach, M.; Sabol, T.; et al. Immersive Interconnected Virtual and Augmented Reality: A 5G and IoT Perspective. J. Netw. Syst. Manag. 2020, 28, 796–826. [Google Scholar] [CrossRef]
- Elbamby, M.S.; Perfecto, C.; Bennis, M.; Doppler, K. Toward Low-Latency and Ultra-Reliable Virtual Reality. IEEE Netw. 2018, 32, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Sani, Y.; Mauthe, A.; Edwards, C. Adaptive bitrate selection: A survey. IEEE Commun. Surv. Tutorials 2017, 19, 2985–3014. [Google Scholar] [CrossRef]
- Barman, N.; Martini, M.G. QoE modeling for HTTP adaptive video streaming–a survey and open challenges. IEEE Access 2019, 7, 30831–30859. [Google Scholar] [CrossRef]
- Shahid Anwar, M.; Wang, J.; Ahmad, S.; Ullah, A.; Khan, W.; Fei, Z. Evaluating the factors affecting QoE of 360-degree videos and cybersickness levels predictions in virtual reality. Electronics 2020, 9, 1530. [Google Scholar] [CrossRef]
- Eryilmaz, A.; Srikant, R. Fair resource allocation in wireless networks using queue-length-based scheduling and congestion control. IEEE/ACM Trans. Netw. 2007, 15, 1333–1344. [Google Scholar] [CrossRef] [Green Version]
- Høiland-Jørgensen, T.; Kazior, M.; Täht, D.; Hurtig, P.; Brunstrom, A. Ending the anomaly: Achieving low latency and airtime fairness in wifi. In Proceedings of the 2017 {USENIX} Annual Technical Conference ({USENIX}{ATC} 17), Santa Clara, CA, USA, 12 July 2017; pp. 139–151. [Google Scholar]
- Ferrand, P.; Amara, M.; Valentin, S.; Guillaud, M. Trends and challenges in wireless channel modeling for evolving radio access. IEEE Commun. Mag. 2016, 54, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Series H: Audiovisual and Multimedia Systems: Infrastructure of Audiovisual Services–Coding of Moving Video. High Efficiency Video Coding; Technical Report; ISO, Headquarters: Geneva, Switzerland, 2019.
- de Rivaz, P.; Haughton, J. Av1 bitstream & decoding process specification. Alliance Open Media 2018, 681. Available online: https://aomediacodec.github.io/av1-spec/av1-spec.pdf. (accessed on 8 March 2021).
- Kalbkhani, H.; Shayesteh, M.G.; Haghighat, N. Adaptive lstar model for long-range variable bitrate video traffic prediction. IEEE Trans. Multimed. 2016, 19, 999–1014. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, B.; Zhang, C.; Ke, N.; Jin, W.; Hao, S. The impact of bitrate and GOP pattern on the video quality of H.265/HEVC compression standard. In Proceedings of the 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xi’an, China, 14–16 September 2018; pp. 1–5. [Google Scholar]
- Laghari, A.A.; He, H.; Karim, S.; Shah, H.A.; Karn, N.K. Quality of experience assessment of video quality in social clouds. Wirel. Commun. Mob. Comput. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Vlahovic, S.; Suznjevic, M.; Skorin-Kapov, L. The Impact of Network Latency on Gaming QoE for an FPS VR Game. In Proceedings of the 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX), Berlin, Germany, 5–7 June 2019; pp. 1–3. [Google Scholar]
- MPEG. ISO/IEC 23009-1:2014 MPEG-DASH 2nd Edition Specification; Technical Report; ISO, Headquarters: Geneva, Switzerland, 2014. [Google Scholar]
- Bentaleb, A.; Taani, B.; Begen, A.C.; Timmerer, C.; Zimmermann, R. A survey on bitrate adaptation schemes for streaming media over HTTP. IEEE Commun. Surv. Tutorials 2018, 21, 562–585. [Google Scholar] [CrossRef]
- Saleme, E.B.; Covaci, A.; Assres, G.; Comsa, I.S.; Trestian, R.; Santos, C.A.; Ghinea, G. The influence of human factors on 360 mulsemedia QoE. Int. J. -Hum.-Comput. Stud. 2020, 146, 102550. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, D.; Wei, X.; Dong, Z. Seeing isn’t believing: QoE evaluation for privacy-aware users. IEEE J. Sel. Areas Commun. 2019, 37, 1656–1665. [Google Scholar] [CrossRef]
- Hu, F.; Deng, Y.; Saad, W.; Bennis, M.; Aghvami, A.H. Cellular-connected wireless virtual reality: Requirements, challenges, and solutions. IEEE Commun. Mag. 2020, 58, 105–111. [Google Scholar] [CrossRef]
- Li, J.; Feng, R.; Liu, Z.; Sun, W.; Li, Q. Modeling QoE of virtual reality video transmission over wireless networks. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–7. [Google Scholar]
- Duanmu, Z.; Liu, W.; Li, Z.; Chen, D.; Wang, Z.; Wang, Y.; Gao, W. Assessing the Quality-of-Experience of Adaptive Bitrate Video Streaming. arXiv 2020, arXiv:2008.08804. [Google Scholar]
- Spiteri, K.; Urgaonkar, R.; Sitaraman, R.K. BOLA: Near-optimal bitrate adaptation for online videos. In Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016; pp. 1–9. [Google Scholar]
- Huang, T.Y.; Johari, R.; McKeown, N.; Trunnell, M.; Watson, M. A buffer-based approach to rate adaptation: Evidence from a large video streaming service. In Proceedings of the 2014 ACM conference on SIGCOMM, Chicago, IL, USA, 17–22 August 2014; pp. 187–198. [Google Scholar]
- Yadav, P.K.; Shafiei, A.; Ooi, W.T. Quetra: A queuing theory approach to dash rate adaptation. In Proceedings of the 25th ACM international conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1130–1138. [Google Scholar]
- Li, Z.; Zhu, X.; Gahm, J.; Pan, R.; Hu, H.; Begen, A.C.; Oran, D. Probe and adapt: Rate adaptation for HTTP video streaming at scale. IEEE J. Sel. Areas Commun. 2014, 32, 719–733. [Google Scholar] [CrossRef] [Green Version]
- Rainer, B.; Lederer, S.; Müller, C.; Timmerer, C. A seamless Web integration of adaptive HTTP streaming. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 27–31 August 2012; pp. 1519–1523. [Google Scholar]
- Bhattacharyya, R.; Bura, A.; Rengarajan, D.; Rumuly, M.; Shakkottai, S.; Kalathil, D.; Mok, R.K.; Dhamdhere, A. Qflow: A reinforcement learning approach to high qoe video streaming over wireless networks. In Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing, Catania, Italy, 2–5 July 2019; pp. 251–260. [Google Scholar]
- Bokani, A.; Hassan, M.; Kanhere, S.; Zhu, X. Optimizing HTTP-based adaptive streaming in vehicular environment using markov decision process. IEEE Trans. Multimed. 2015, 17, 2297–2309. [Google Scholar] [CrossRef]
- Jiang, J.; Sekar, V.; Zhang, H. Improving fairness, efficiency, and stability in http-based adaptive video streaming with festive. In Proceedings of the 8th International Conference on Emerging Networking Experiments and Technologies, Nice, France, 10–13 December 2012; pp. 97–108. [Google Scholar]
- Zhou, C.; Lin, C.W.; Zhang, X.; Guo, Z. TFDASH: A fairness, stability, and efficiency aware rate control approach for multiple clients over DASH. IEEE Trans. Circuits Syst. Video Technol. 2017, 29, 198–211. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Jin, R.; Hao, S.; Pattipati, K.R.; Qian, F.; Sen, S.; Wang, B.; Yue, C. A control theoretic approach to ABR video streaming: A fresh look at PID-based rate adaptation. In Proceedings of the IEEE INFOCOM 2017—IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4 May 2017; pp. 1–9. [Google Scholar]
- Krishnamoorthi, V.; Carlsson, N.; Halepovic, E.; Petajan, E. BUFFEST: Predicting buffer conditions and real-time requirements of HTTP (S) adaptive streaming clients. In Proceedings of the 8th ACM on Multimedia Systems Conference, Taipei, Taiwan, 20–23 June 2017; pp. 76–87. [Google Scholar]
- Khorov, E.; Krasilov, A.; Liubogoshchev, M.; Tang, S. SEBRA: SAND-enabled bitrate and resource allocation algorithm for network-assisted video streaming. In Proceedings of the 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy, 9–11 October 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Khorov, E.; Kiryanov, A.; Kovkov, D.; Krasilov, A.; Liubogoshchev, M.; Shmelkin, D.; Tang, S. xStream: A new platform enabling communication between applications and the 5G network. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Barakabitze, A.A.; Barman, N.; Ahmad, A.; Zadtootaghaj, S.; Sun, L.; Martini, M.G.; Atzori, L. QoE management of multimedia streaming services in future networks: A tutorial and survey. IEEE Commun. Surv. Tutorials 2019, 22, 526–565. [Google Scholar] [CrossRef] [Green Version]
- Spiteri, K.; Sitaraman, R.; Sparacio, D. From theory to practice: Improving bitrate adaptation in the DASH reference player. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2019, 15, 1–29. [Google Scholar] [CrossRef]
- Xie, L.; Zhou, C.; Zhang, X.; Guo, Z. Dynamic threshold based rate adaptation for HTTP live streaming. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [Google Scholar]
- Wei, S.; Swaminathan, V. Low latency live video streaming over HTTP 2.0. In Proceedings of the Network and Operating System Support on Digital Audio and Video Workshop, Singapore, 19–20 March 2014; pp. 37–42. [Google Scholar]
- Xiao, M.; Swaminathan, V.; Wei, S.; Chen, S. Dash2m: Exploring http/2 for internet streaming to mobile devices. In Proceedings of the 24th ACM international conference on Multimedia, Beijing, China, 19–24 October 2016; pp. 22–31. [Google Scholar]
- Peng, H.; Zhang, Y.; Yang, Y.; Yan, J. A hybrid control scheme for adaptive live streaming. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2627–2631. [Google Scholar]
- Öztürk, E.; Silhavy, D.; Einarsson, T.; Stockhammer, T. Low latency DASH-more than just spec: DASH-IF test tools. In Proceedings of the 11th ACM Multimedia Systems Conference, Istanbul, Turkey, 8–11 June 2020; pp. 353–356. [Google Scholar]
- Chen, S.; Zhang, Y.; Peng, H.; Yan, J. A Joint Bitrate and Buffer Control Scheme for Low-Latency Live Streaming. In Proceedings of the International Conference on Intelligent Science and Big Data Engineering, Nanjing, China, 18–20 October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 369–380. [Google Scholar]
- Xiao, X.; Wang, W.; Chen, T.; Cao, Y.; Jiang, T.; Zhang, Q. Sensor-Augmented Neural Adaptive Bitrate Video Streaming on UAVs. IEEE Trans. Multimed. 2020, 22, 1567–1576. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Yang, M.; Zhang, W. A Practical Low Latency System for Cloud-Based VR Applications. In Proceedings of the International Conference on Communications and Networking in China, Shanghai, China, 29 November–1 December 2019; pp. 73–81. [Google Scholar]
- YouTube Recommeded Video Coding Settings. Available online: https://support.google.com/youtube/answer/1722171 (accessed on 25 November 2020).
- Prasad, R.; Dovrolis, C.; Murray, M.; Claffy, K. Bandwidth estimation: Metrics, measurement techniques, and tools. IEEE Netw. 2003, 17, 27–35. [Google Scholar] [CrossRef] [Green Version]
- The Network Simulator ns-3. Available online: https://www.nsnam.org (accessed on 25 November 2020).
- 3GPP. Study on Channel Model for Frequencies from 0.5 to 100 GHz (3GPP TR 38.901 Version 15.0.0 Release 15); 3GPP, Headquarters: Sophia Antipolis, France, 2018. [Google Scholar]
- Laghari, A.A.; He, H.; Khan, A.; Kumar, N.; Kharel, R. Quality of experience framework for cloud computing (QoC). IEEE Access 2018, 6, 64876–64890. [Google Scholar] [CrossRef]
- Laghari, A.A.; He, H.; Shafiq, M.; Khan, A. Impact of storage of mobile on quality of experience (QoE) at user level accessing cloud. In Proceedings of the 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), Guangzhou, China, 6–8 May 2017; pp. 1402–1409. [Google Scholar]
- Laghari, A.A.; He, H.; Shafiq, M.; Khan, A. Assessment of quality of experience (QoE) of image compression in social cloud computing. Multiagent Grid Syst. 2018, 14, 125–143. [Google Scholar] [CrossRef]
- Ragimova, K.; Loginov, V.; Khorov, E. Analysis of YouTube DASH Traffic. In Proceedings of the 2019 IEEE BlackSeaCom, Sochi, Russia, 3–6 June 2019. [Google Scholar]
- FFmpeg h265 Encoding Guide. Available online: https://trac.ffmpeg.org/wiki/Encode/H.265 (accessed on 25 November 2020).
- x265 Encoding Profiles. Available online: https://x265.readthedocs.io/en/release_3.3/presets.html (accessed on 25 November 2020).
- Wang, Y.-K.; Sanchez, Y.; Schierl, T.; Wenger, S.; Hannuksela, M.M. RTP Payload Format for High Efficiency Video Coding; RFC 7798; IETF, Headquarters: Fremont, CA, USA, 2016. [Google Scholar]
- DASH-IF. dash.js. Available online: https://github.com/Dash-Industry-Forum/dash.js (accessed on 18 September 2020).
Parameter | Value |
---|---|
Carrier frequency | 2 GHz |
Bandwidth | 20 MHz |
Channel model | 3GPP Indoor-Office [67] |
gNB/UE TX Power | 23 dBm |
gNB antenna pattern | omnidirectional |
gNB height | 6 m |
UE height | 1 m |
TTI duration | 1 ms |
1500 bytes | |
Experiment duration | 1000 s |
Number of experiment runs | 100 |
Video codec | h265 |
Frame rate, | 60 fps |
GoP duration | 60 frames |
Parameter | Value |
---|---|
Short frame delay window, | 1 s |
Long frame delay window, | 5 s |
User dynamics window, | 5 s |
Reset value for bitrate decrease, | 5 ms |
Reset value for bitrate increase, | 20 ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liubogoshchev, M.; Korneev, E.; Khorov, E. EVeREst: Bitrate Adaptation for Cloud VR. Electronics 2021, 10, 678. https://doi.org/10.3390/electronics10060678
Liubogoshchev M, Korneev E, Khorov E. EVeREst: Bitrate Adaptation for Cloud VR. Electronics. 2021; 10(6):678. https://doi.org/10.3390/electronics10060678
Chicago/Turabian StyleLiubogoshchev, Mikhail, Evgeny Korneev, and Evgeny Khorov. 2021. "EVeREst: Bitrate Adaptation for Cloud VR" Electronics 10, no. 6: 678. https://doi.org/10.3390/electronics10060678
APA StyleLiubogoshchev, M., Korneev, E., & Khorov, E. (2021). EVeREst: Bitrate Adaptation for Cloud VR. Electronics, 10(6), 678. https://doi.org/10.3390/electronics10060678