Toward an Advanced Human Monitoring System Based on a Smart Body Area Network for Industry Use
Abstract
:1. Introduction
2. SmartBAN Specifications
2.1. Physical Layer
2.1.1. Frequency Band
2.1.2. Packet Format, Modulation and Coding Scheme
2.2. Medium Access Control Layer
- The user priority of its traffic was determined according to Table 2;
- The range of its CP based on the user priority of its traffic was obtained according to Table 3;
- If the node had successfully completed or had not begun a slotted ALOHA channel access session previously, its CP was set to ;
- If the node did not successfully complete a slotted ALOHA channel access session in the last attempt:
- If it had failed times consecutively, where is an odd number, it kept its unchanged CP;
- In the event that it had failed times consecutively, where is an even number, it halved its CP if the CP was greater than or equal to 2 × or kept its CP unchanged otherwise.
3. System Model
3.1. Use Case
3.2. Modified PHY
3.3. Mathematical Model
4. Results and Discussion
4.1. PHY Performance
4.1.1. Computer Simulation Parameters
4.1.2. PLCP Header Detection Failure Ratio
4.1.3. Packet Error Ratio and Energy Efficiency
4.1.4. Link Budget and Receiver Sensitivity
4.2. Network Performance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gatouillat, A.; Badr, Y.; Massot, B.; Sejdić, E. Internet of Medical Things: A Review of Recent Contributions Dealing with Cyber-Physical Systems in Medicine. IEEE Internet Things J. 2018, 5, 3810–3822. [Google Scholar] [CrossRef] [Green Version]
- Limaye, A.; Adegbija, T. HERMIT: A Benchmark Suite for the Internet of Medical Things. IEEE Internet Things J. 2018, 5, 4212–4222. [Google Scholar] [CrossRef]
- Spinsante, S.; Gambi, E. Remote health monitoring for elderly through interactive television. Biomed. Eng. Online 2012, 11, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, C.R.; Anido-Rifón, L.E.; Fernández-Iglesias, M.J. An Open Architecture to Support Social and Health Services in a Smart TV Environment. IEEE J. Biomed. Health Inform. 2017, 21, 549–560. [Google Scholar] [CrossRef]
- Chen, M.; Gonzalez, S.; Vasilakos, A.V.; Cao, H. VCM Leung, Body Area Networks: A Survey. Mob. Netw. Appl. 2010, 16, 171–193. [Google Scholar] [CrossRef]
- Cavallari, R.; Martelli, F.; Rosini, R.; Buratti, C.; Verdone, R. A Survey on Wireless Body Area Networks: Technologies and Design Challenges. IEEE Commun. Surv. Tutor. 2014, 16, 1635–1657. [Google Scholar] [CrossRef]
- Movassaghi, S.; Abolhasan, M.; Lipman, J.; Smith, D.; Jamalipour, A. Wireless Body Area Networks: A Survey. IEEE Commun. Surv. Tutor. 2014, 16, 1658–1686. [Google Scholar] [CrossRef]
- Hayajneh, T.; Almashaqbeh, G.; Ullah, S.; Vasilakos, A.V. A survey of wireless technologies coexistence in WBAN: Analysis and open research issues. Wirel. Netw. 2014, 20, 2165–2199. [Google Scholar] [CrossRef]
- Fortino, G.; Fatta, G.D.; Pathan, M.; Vasilakos, A.V. Cloud-assisted body area networks: State-of-the-art and future challenges. Wirel. Netw. 2014, 20, 1925–1938. [Google Scholar] [CrossRef]
- Ning, Z.; Dong, P.; Wang, X.; Hu, X.; Guo, L.; Hu, B.; Guo, Y.; Qiu, T.; Kwok, R.Y. Mobile Edge Computing Enabled 5G Health Monitoring for Internet of Medical Things: A Decentralized Game Theoretic Approach. IEEE J. Sel. Areas Commun. 2021, 39, 463–478. [Google Scholar] [CrossRef]
- Cao, T.; Tao, L.; Liu, D.; Wang, Q.; Sun, J. Design and Realization of Blood Oxygen and Heart Rate Sensor Nodes in Wireless Body Area Network. In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 27–29 June 2020. [Google Scholar]
- Blunda, L.L.; Gutiérrez-Madroñal, L.; Wagner, M.F.; Medina-Bulo, I. A Wearable Fall Detection System Based on Body Area Networks. IEEE Access 2020, 8, 193060–193074. [Google Scholar] [CrossRef]
- Mehmood, G.; Khan, M.Z.; Waheed, A.; Zareei, M.; Mohamed, E.M. A Trust-Based Energy-Efficient and Reliable Communication Scheme (Trust-Based ERCS) for Remote Patient Monitoring in Wireless Body Area Networks. IEEE Access 2020, 8, 131397–131413. [Google Scholar] [CrossRef]
- Smart Body Area Network (SmartBAN); Low Complexity Medium Access Control (MAC) for SmartBAN. ETSI TC Smart BAN TS 103 325 V1.1.1. 2015. Available online: http://www.etsi.org/deliver/etsi_ts/103300_103399/103325/01.01.01_60/ts_103325v010101p.pdf (accessed on 9 February 2021).
- Smart Body Area Network (SmartBAN); Enhanced Ultra-Low Power Physical Layer. ETSI TC Smart BAN TS 103 326 V1.1.1. 2015. Available online: https://www.etsi.org/deliver/etsi_ts/103300_103399/103326/01.01.01_60/ts_103326v010101p.pdf (accessed on 9 February 2021).
- Hämäläinen, M.; Mucchi, L.; Girod-Genet, M.; Paso, T.; Farserotu, J.; Tanaka, H.; Anzai, D.; Pierucci, L.; Khan, R.; Alam, M.M.; et al. ETSI SmartBAN Architecture: The Global Vision for Smart Body Area Networks. IEEE Access 2020, 8, 150611–150625. [Google Scholar] [CrossRef]
- IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks; Specific Requirements: Part 15.6: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs) Used in or 12 around A Body. 2012. Available online: https://ieeexplore.ieee.org/document/6161600 (accessed on 9 February 2021).
- Tanaka, H.; Hatakeyama, Y.; Komori, T.; Saho, S.; Shiode, N. Evaluation of PWTT Based Blood Pressure Fluctuation using Body Area Network. In Proceedings of the IEEE Engineering in Medicine and Biology Society (EMBC’18), Honolulu, HI, USA, 17–21 July 2018. [Google Scholar]
- Urata, Y.; Umetani, A. Introduction to Use Scenes of Biodata and Other Field Data in a Smart City. In Proceedings of the ETSI IoT Week 2018, Sophia Antipolis, France, 22–26 October 2018. [Google Scholar]
- Din, I.U.; Almogren, A.; Guizani, M.; Zuair, M. A Decade of Internet of Things: Analysis in the Light of Healthcare Applications. IEEE Access 2019, 7, 89967–89979. [Google Scholar] [CrossRef]
- Ang, K.L.; Seng, J.K.P. Application Specific Internet of Things (ASIoTs): Taxonomy, Applications, Use Case and Future Directions. IEEE Access 2019, 7, 56577–56590. [Google Scholar] [CrossRef]
- Syberfeldt, A.; Danielsson, O.; Gustavsson, P. Augmented Reality Smart Glasses in the Smart Factory: Product Evaluation Guidelines and Review of Available Products. IEEE Access 2017, 5, 9118–9130. [Google Scholar] [CrossRef]
- Mourtzis, D.; Siatras, V.; Angelopoulos, J. Real-Time Remote Maintenance Support Based on Augmented Reality (AR). Appl. Sci. 2020, 10, 1855. [Google Scholar] [CrossRef] [Green Version]
- Mourtzis, D.; Zogopoulos, V.; Vlachou, E. Augmented Reality Application to Support Remote Maintenance as a Service in the Robotics Industry. Procedia Cirp 2017, 63, 46–51. [Google Scholar] [CrossRef]
- Ruppert, T.; Jaskó, S.; Holczinger, T.; Abonyi, J. Enabling Technologies for Operator 4.0: A Survey. Appl. Sci. 2018, 8, 1650. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.; Alam, M.M.; Guizani, M. A Flexible Enhanced Throughput and Reduced Overhead (FETRO) MAC Protocol for ETSI SmartBAN. IEEE Trans. Mob. Comput. 2020. Available online: https://ieeexplore.ieee.org/document/9309094 (accessed on 25 February 2021). [CrossRef]
- Ramis-Bibiloni, J.; Carrasco-Martorell, L. Energy-Efficient and QoS-Aware Link Adaptation with Resource Allocation for Periodical Monitoring Traffic in SmartBANs. IEEE Access 2020, 8, 13476–13488. [Google Scholar] [CrossRef]
- Stojanov, G.; Kulakov, A. ICT Innovations 2016 Cognitive Functions and Next Generation ICT Systems; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- MMA8452Q, 3-axis, 12-bit/8-bit Digital Accelerometer, NXP Semiconductors, Data Sheet: Technical Data, Document Number: MMA8452Q. 2016. Available online: https://www.nxp.com/docs/en/data-sheet/MMA8452Q.pdf (accessed on 24 January 2021).
- White Paper: The AAC Audio Coding Family for Broadcast and Cable TV. Fraunhofer-Gesellschaft. 2013. Available online: https://www.iis.fraunhofer.de/content/dam/iis/de/doc/ame/wp/FraunhoferIIS_White-Paper_AAC-Broadcast-CableTV.pdf (accessed on 24 January 2021).
- Choose Live Encoder Settings, Bitrates, and Resolutions. Available online: https://support.google.com/youtube/answer/2853702?hl=en#zippy (accessed on 24 January 2021).
- Takabayashi, K.; Tanaka, H.; Sakakibara, K. Integrated Performance Evaluation of the Smart Body Area Networks Physical Layer for Future Medical and Healthcare IoT. Sensors 2019, 18, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middlestead, R.W. Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Yazdandoost, K.Y.; Sayrafian-Pour, K. Channel Model for Body Area Network (BAN). IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), IEEE P802.15-08-0780-10-0006. 2009. Available online: https://mentor.ieee.org/802.15/file/08/15-08-0780-10-0006-tg6-channel-model.pdf (accessed on 28 September 2018).
- CC1101 Low-Power Sub1 GHz RF Transceiver Datasheet; SWRS061I; Texas Instruments: Dallas, TX, USA, 2020; Available online: https://www.ti.com/lit/ds/symlink/cc1101.pdf (accessed on 27 January 2021).
- CC13x0, CC26x0 SimpleLink™ Wireless MCU Technical Reference Manual; SWCU117I; Texas Instruments: Dallas, TX, USA, 2020; Available online: https://www.ti.com/lit/ug/swcu117i/swcu117i.pdf (accessed on 27 January 2021).
- International Telecommunication Union. Multiplexing protocol for low bit rate multimedia communication. In ITU-T Recommendation H.223; International Telecommunication Union: Geneva, Switzerland, 2001. [Google Scholar]
- Habuchi, H. Pseudo-Noise Sequences Based on M-sequence and Its Application for Communications. IEICE Fundam. Rev. 2009, 3, 32–42. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
Symbol Rate
(Mega-Symbol/sec, Msps) | Coding Rate | Data Rate (Mbit/sec) | |
---|---|---|---|
1.0 | 1 | 1 | 1.0 |
1.0 | 1 | 2 | 0.5 |
1.0 | 1 | 4 | 0.25 |
1.0 | 113/127 | 1 | 0.89 |
1.0 | 113/127 | 2 | 0.44 |
1.0 | 113/127 | 4 | 0.22 |
User Priority | Data Type |
---|---|
0 | Low Priority |
1 | Mid Priority |
2 | High Priority |
3 | Very High (Emergency) |
User Priority | Contention Probabilities | |
---|---|---|
0 | 1/8 | 1/16 |
1 | 1/4 | 1/16 |
2 | 1/2 | 1/8 |
3 | 1 | 1/2 |
Sensor Number | Sensor Type | Target Data Rate | User Priority |
---|---|---|---|
1 | SpO2 | 17.3 kbps | 1 |
2 | ECG | 24 kbps | 1 |
3 | Accelerometer | 1.2 kbps | 1 |
4 | Pulse rate | 8 bps | 0 |
5 | Blood pressure | 8 bps | 0 |
6 | Temperature | 8 bps | 0 |
7 | Audio (downlink) | 128 kbps | 2 |
8 | Video (downlink) | 700 kbps | 2 |
9 | Audio (uplink) | 128 kbps | 2 |
10 | Video (uplink) | 500, 700, 1100 and 2500 kbps | 2 |
Parameter | Detail |
---|---|
Channel model | AWGN, IEEE model CM3 |
Path loss model | IEEE model CM3 (Hospital Room) |
Frequency spectrum | 2401–2481 MHz |
Bandwidth () | 2 MHz |
Modulation | GFSK, QPSK, -DQPSK, D8PSK |
Bandwidth-time product (BT) | 0.5 |
Modulation index (h) | 0.5 |
ECC (PLCP Header) | (36, 22) shortened BCH code |
ECC (PSDU) | (127, 113) BCH code, (127, 85) BCH code |
Maximum transmission power () | 4 dBm |
Thermal noise density () | −174 dBm/Hz |
Implementation losses () | 6 dB |
Receiver noise figure () | 13 dB |
PSDU length () | 127 bytes |
ACK PSDU length () | 127 bits |
Preamble length () | 2 octets |
PLCP header length () | 40 bits |
Symbol rate () | 1.0 Msps |
Interframe spacing duration () | 150 s |
Sequence Type | Bit Sequence (Hexadecimal) |
---|---|
TI CC2650 sync word [35,36] | 1101001110010001 (0xD391) |
ITU-T Rec. H223 16-bit flag [37] | 1000011110110010 (0x87B2) |
Orthogonal M-sequence [38] | 1111010110010000 (0xF590) |
Manchester- coded Orthogonal M-sequence [38] | 1010100101100101 (0xA965) |
Parameter | Detail |
---|---|
6.6 | |
36.1 | |
3.8 | |
[dB] | 30.6 |
[dB] | 0.43 |
3.4 |
Channel Model | ECC | GFSK | QPSK | Shift DQPSK | D8PSK |
---|---|---|---|---|---|
AWGN | No ECC | 9.5 | 12.5 | 14.8 | 20.6 |
(127, 113) BCH | 7.5 | 9.3 | 12.1 | 17.5 | |
(127, 85) BCH | 5.6 | 7.1 | 10.0 | 15.1 | |
CM3 (medium shadowing case) | No ECC | 18.0 | 21.0 | 23.5 | 29.8 |
(127, 113) BCH | 16.5 | 18.5 | 21.0 | 26.2 | |
(127, 85) BCH | 14.8 | 16.5 | 19.0 | 23.8 | |
CM3 (strong shadowing case) | No ECC | 24.0 | 27.2 | 29.6 | 38.0 |
(127, 113) BCH | 22.6 | 24.8 | 27.2 | 35.4 | |
(127, 85) BCH | 21.0 | 22.5 | 25.1 | 33.1 |
Channel Model | ECC | GFSK | QPSK | Shift DQPSK | D8PSK |
---|---|---|---|---|---|
AWGN | No ECC | 11.8 | 13.5 | 16.9 | 21.6 |
(127, 113) BCH | 9.8 | 10.2 | 12.9 | 18.3 | |
(127, 85) BCH | 7.6 | 8.0 | 11.0 | 16.2 | |
CM3 (medium shadowing case) | No ECC | 26.0 | 28.5 | 31.2 | 36.4 |
(127, 113) BCH | 24.0 | 26.2 | 28.5 | 34.8 | |
(127, 85) BCH | 22.8 | 24.0 | 27.0 | 31.2 | |
CM3 (strong shadowing case) | No ECC | 37.0 | 40.1 | 42.6 | 48.4 |
(127, 113) BCH | 35.1 | 37.6 | 40.1 | 45.2 | |
(127, 85) BCH | 34.2 | 35.1 | 38.0 | 42.9 |
ECC | GFSK | QPSK | Shift DQPSK | D8PSK | |
---|---|---|---|---|---|
No ECC | 1.0 | −84.5 | −82.0 | −79.7 | −74.1 |
1.5 | −82.7 | −80.2 | −77.9 | −72.3 | |
2.0 | −81.5 | −79.0 | −76.7 | −71.0 | |
(127, 113) BCH | 1.0 | −86.6 | −85.3 | −82.5 | −77.2 |
1.5 | -84.8 | −83.5 | −80.7 | −75.4 | |
2.0 | −84.6 | −82.2 | −79.4 | −74.2 | |
(127, 85) BCH | 1.0 | −88.7 | −87.6 | −84.7 | −79.7 |
1.5 | −87.0 | −85.8 | −82.9 | −77.9 | |
2.0 | −85.7 | −84.6 | −81.7 | −76.7 |
ECC | GFSK | QPSK | Shift DQPSK | D8PSK | |
---|---|---|---|---|---|
No ECC | 1.0 | −82.2 | −81.0 | −77.6 | −73.1 |
1.5 | −80.4 | −79.2 | −75.8 | −71.3 | |
2.0 | −79.2 | −78.0 | −74.6 | −70.1 | |
(127, 113) BCH | 1.0 | −84.3 | −84.4 | −81.7 | −76.4 |
1.5 | −82.5 | −82.6 | −79.9 | −74.6 | |
2.0 | −81.3 | −81.3 | −78.6 | −73.4 | |
(127, 85) BCH | 1.0 | −86.7 | −86.7 | −83.7 | −78.6 |
1.5 | −85.0 | −84.9 | −81.9 | −76.8 | |
2.0 | −83.7 | −83.7 | −80.7 | −75.6 |
ECC | GFSK | QPSK | Shift DQPSK | D8PSK | |
---|---|---|---|---|---|
No ECC | 1.0 | 34.6 | 32.1 | 29.8 | 24.2 |
1.5 | 32.8 | 30.3 | 28.0 | 22.4 | |
2.0 | 31.6 | 29.1 | 26.8 | 21.2 | |
(127, 113) BCH | 1.0 | 36.7 | 35.4 | 32.6 | 27.3 |
1.5 | 34.9 | 33.6 | 30.8 | 25.5 | |
2.0 | 33.7 | 32.3 | 29.5 | 24.3 | |
(127, 85) BCH | 1.0 | 37.1 | 35.9 | 33.0 | 28.0 |
1.5 | 35.8 | 34.7 | 31.8 | 26.8 | |
2.0 | 36.8 | 36.8 | 33.8 | 28.7 |
ECC | GFSK | QPSK | Shift DQPSK | D8PSK | |
---|---|---|---|---|---|
No ECC | 1.0 | 32.3 | 31.1 | 27.7 | 23.2 |
1.5 | 30.5 | 29.3 | 25.9 | 21.4 | |
2.0 | 29.3 | 28.1 | 24.7 | 20.2 | |
(127, 113) BCH | 1.0 | 34.4 | 34.5 | 31.8 | 26.5 |
1.5 | 32.6 | 32.7 | 30.0 | 24.7 | |
2.0 | 31.4 | 31.4 | 28.7 | 23.5 | |
(127, 85) BCH | 1.0 | 36.8 | 36.8 | 33.8 | 28.7 |
1.5 | 35.1 | 35.0 | 32.0 | 26.9 | |
2.0 | 33.8 | 33.8 | 30.8 | 25.7 |
1.0 | 500 | 16.95 | 23.78 | 1.117 | 0.004421 | 0.005684 | 0.008526 | 126.5 | 522.1 | 4.916 | 4.840 |
700 | 16.98 | 23.80 | 1.108 | 0.005052 | 0.008526 | 0.004421 | 126.1 | 522.1 | 4.924 | 4.870 | |
1100 | 17.08 | 23.61 | 1.154 | 0.008210 | 0.01390 | 0.01137 | 126.4 | 521.9 | 4.929 | 4.981 | |
2500 | 17.12 | 23.82 | 1.133 | 0.01010 | 0.008526 | 0.009473 | 126.3 | 522.0 | 4.879 | 4.931 | |
1.5 | 500 | 16.41 | 23.25 | 1.039 | 0.007579 | 0.008526 | 0.006631 | 125.0 | 697.0 | 125.7 | 45.01 |
700 | 16.58 | 23.13 | 1.002 | 0.005210 | 0.006158 | 0.006158 | 125.3 | 697.0 | 124.8 | 45.09 | |
1100 | 16.52 | 23.37 | 1.032 | 0.009947 | 0.008052 | 0.008526 | 124.9 | 697.2 | 125.6 | 45.17 | |
2500 | 16.72 | 23.25 | 1.018 | 0.006631 | 0.005684 | 0.006631 | 124.8 | 697.3 | 125.7 | 44.93 | |
2.0 | 500 | 15.93 | 22.57 | 0.8631 | 0.01053 | 0.007368 | 0.003684 | 123.6 | 695.8 | 123.9 | 405.3 |
700 | 16.01 | 22.60 | 0.9221 | 0.006842 | 0.01053 | 0.007368 | 123.3 | 695.8 | 123.7 | 405.4 | |
1100 | 16.00 | 22.65 | 0.9442 | 0.007368 | 0.009473 | 0.006842 | 123.8 | 695.3 | 123.6 | 405.4 | |
2500 | 15.91 | 22.56 | 0.8568 | 0.004210 | 0.009473 | 0.005789 | 123.4 | 695.2 | 123.7 | 405.5 | |
3.0 | 500 | 14.87 | 21.50 | 0.7528 | 0.003760 | 0.009776 | 0.007520 | 121.2 | 693.3 | 121.8 | 493.9 |
700 | 14.88 | 21.19 | 0.7565 | 0.008272 | 0.01203 | 0.007520 | 121.8 | 693.6 | 121.5 | 694.8 | |
1100 | 14.74 | 21.61 | 0.7911 | 0.005264 | 0.005264 | 0.006016 | 121.1 | 693.9 | 121.4 | 1020 | |
2500 | 15.01 | 21.46 | 0.7550 | 0.004512 | 0.006768 | 0.009776 | 121.2 | 694.3 | 121.6 | 1020 | |
4.0 | 500 | 14.17 | 20.45 | 0.6759 | 0.008460 | 0.008460 | 0.005640 | 119.1 | 691.4 | 119.8 | 492.9 |
700 | 13.80 | 20.48 | 0.7191 | 0.005640 | 0.006580 | 0.006580 | 119.8 | 691.0 | 119.0 | 691.8 | |
1100 | 13.90 | 20.53 | 0.6627 | 0.009400 | 0.003760 | 0.005640 | 119.4 | 691.4 | 119.2 | 1092 | |
2500 | 13.63 | 20.47 | 0.6834 | 0.006580 | 0.005640 | 0.003760 | 119.5 | 691.8 | 118.7 | 1704 | |
4.5 | 500 | 13.72 | 20.50 | 0.6775 | 0.004039 | 0.009087 | 0.003029 | 119.0 | 690.7 | 118.9 | 491.2 |
700 | 13.54 | 19.94 | 0.6351 | 0.004039 | 0.005049 | 0.003029 | 118.6 | 690.6 | 118.7 | 691 | |
1100 | 13.77 | 20.15 | 0.6876 | 0.008078 | 0.004039 | 0.003029 | 119.1 | 691.1 | 119.3 | 1092 | |
2500 | 13.71 | 20.22 | 0.7088 | 0.009087 | 0.003029 | 0.003029 | 118.5 | 691.1 | 118.1 | 1905 | |
6.0 | 500 | 12.82 | 18.84 | 0.6738 | 0.004308 | 0.002585 | 0.005170 | 116.1 | 688.1 | 116.1 | 489.9 |
700 | 12.74 | 18.63 | 0.6678 | 0.006893 | 0.001723 | 0.005170 | 116.3 | 688.6 | 115.3 | 689.4 | |
1100 | 12.75 | 18.89 | 0.6410 | 0.004308 | 0.004308 | 0.004308 | 115.8 | 688.0 | 115.4 | 1088 | |
2500 | 12.65 | 18.88 | 0.6281 | 0.005170 | 0.006031 | 0.004308 | 115.0 | 688.7 | 115.6 | 2488 |
1.0 | 500 | 174.8 | 273.6 | 143.1 | 85.68 | 120.8 | 135.3 | 132.3 | 302.6 (s) | 93.16 (s) | 24.74 (s) |
700 | 172.7 | 277.2 | 141.4 | 145.8 | 114.0 | 141.2 | 130.1 | 303.0 (s) | 93.13 (s) | 17.85 (s) | |
1100 | 174.2 | 259.2 | 140.8 | 118.5 | 100.4 | 128.4 | 131.7 | 303.6 (s) | 93.28 (s) | 16.11 (s) | |
2500 | 176.8 | 267.8 | 142.1 | 118.7 | 99.65 | 109.0 | 133.2 | 302.9 (s) | 92.62 (s) | 15.85 (s) | |
1.5 | 500 | 155.2 | 214.6 | 133.4 | 150.4 | 145.5 | 95.70 | 125.0 | 55.97 | 114.6 | 93.13 (s) |
700 | 157.8 | 206.3 | 129.3 | 165.5 | 137.9 | 142.9 | 124.9 | 56.08 | 112.5 | 68.70 (s) | |
1100 | 157.3 | 208.1 | 128.7 | 129.6 | 131.4 | 73.31 | 123.6 | 55.69 | 117.3 | 44.87 (s) | |
2500 | 156.7 | 195.3 | 129.5 | 145.2 | 115.9 | 118.2 | 124.2 | 56.42 | 115.6 | 41.73 (s) | |
2.0 | 500 | 146.0 | 177.1 | 125.3 | 90.52 | 123.8 | 133.7 | 122.8 | 74.94 | 107.0 | 142.5 (s) |
700 | 147.1 | 178.8 | 122.5 | 140.7 | 103.5 | 84.77 | 122.4 | 74.91 | 106.4 | 234.6 (s) | |
1100 | 147.6 | 181.5 | 126.8 | 153.6 | 124.3 | 152.5 | 122.8 | 74.63 | 106.7 | 225.6 (s) | |
2500 | 147.4 | 175.7 | 120.4 | 117.4 | 143.2 | 108.5 | 121.5 | 74.05 | 107.2 | 185.5 (s) | |
3.0 | 500 | 132.9 | 149.4 | 115.4 | 106.8 | 97.99 | 109.0 | 117.5 | 89.41 | 101.9 | 43.54 |
700 | 132.8 | 146.1 | 115.0 | 98.25 | 102.2 | 133.2 | 118.2 | 89.74 | 102.0 | 50.77 | |
1100 | 134.7 | 152.2 | 120. 3 | 118.0 | 96.82 | 128.4 | 118.2 | 90.55 | 102.8 | 42.11 (s) | |
2500 | 132.1 | 153.4 | 114.9 | 88.22 | 112.2 | 83.28 | 118.4 | 89.81 | 102.9 | 167.5 (s) | |
4.0 | 500 | 125.5 | 132.7 | 108.1 | 127.4 | 105.0 | 83.76 | 116.4 | 96.81 | 99.41 | 23.32 |
700 | 123.3 | 134.2 | 111.6 | 85.60 | 168.5 | 127.1 | 116.6 | 97.74 | 99.22 | 26.82 | |
1100 | 123.8 | 136.1 | 109.2 | 95.95 | 145.2 | 103.9 | 115.5 | 97.23 | 99.49 | 34.37 | |
2500 | 124.9 | 135.4 | 110.1 | 92.75 | 125.5 | 162.4 | 116.4 | 97.44 | 100.3 | 116.6 (s) | |
4.5 | 500 | 123.9 | 132.7 | 106.6 | 114.5 | 115.7 | 76.54 | 115.9 | 97.90 | 98.58 | 19.98 |
700 | 123.5 | 130.9 | 109.5 | 101.5 | 105.2 | 56.13 | 115.5 | 98.58 | 98.95 | 22.90 | |
1100 | 125.1 | 131.4 | 106.9 | 95.46 | 151.1 | 93.79 | 116.2 | 99.04 | 99.49 | 29.26 | |
2500 | 122.6 | 130.6 | 108.5 | 152.1 | 134.4 | 109.4 | 115.5 | 99.30 | 98.99 | 90.24 (s) | |
6.0 | 500 | 118.3 | 122.7 | 108.7 | 138.3 | 109.5 | 89.67 | 114.5 | 102.9 | 96.35 | 10.64 |
700 | 117.6 | 120.8 | 107.9 | 112.3 | 105.9 | 83.57 | 114.9 | 103.3 | 97.06 | 12.37 | |
1100 | 118.6 | 121.5 | 103.5 | 120.4 | 83.51 | 66.77 | 114.8 | 103.7 | 97.84 | 15.53 | |
2500 | 117.6 | 123.3 | 107.0 | 113.5 | 118.1 | 114.0 | 114.7 | 104.0 | 98.21 | 31.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takabayashi, K.; Tanaka, H.; Sakakibara, K. Toward an Advanced Human Monitoring System Based on a Smart Body Area Network for Industry Use. Electronics 2021, 10, 688. https://doi.org/10.3390/electronics10060688
Takabayashi K, Tanaka H, Sakakibara K. Toward an Advanced Human Monitoring System Based on a Smart Body Area Network for Industry Use. Electronics. 2021; 10(6):688. https://doi.org/10.3390/electronics10060688
Chicago/Turabian StyleTakabayashi, Kento, Hirokazu Tanaka, and Katsumi Sakakibara. 2021. "Toward an Advanced Human Monitoring System Based on a Smart Body Area Network for Industry Use" Electronics 10, no. 6: 688. https://doi.org/10.3390/electronics10060688
APA StyleTakabayashi, K., Tanaka, H., & Sakakibara, K. (2021). Toward an Advanced Human Monitoring System Based on a Smart Body Area Network for Industry Use. Electronics, 10(6), 688. https://doi.org/10.3390/electronics10060688