SmartFit: Smartphone Application for Garment Fit Detection
Abstract
:1. Introduction
2. Data Acquisition and Pre-Processing
3. Methods
3.1. Feature Points Detection
3.2. Bag-of-Features
3.3. Body Shape Classification
3.3.1. k-Nearest Neighborhood (k-NN)
3.3.2. Convolutional Neural Network (CNN)
4. Results
5. Discussion
6. Conclusions
7. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wagner, G.; Schramm-Klein, H.; Steinmann, S. Online retailing across e-channels and e-channel touchpoints: Empirical studies of consumer behavior in the multichannel e-commerce environment. J. Bus. Res. 2020, 107, 256–270. [Google Scholar] [CrossRef]
- Ecola, L.; Lu, H.; Rohr, C. How Is COVID-19 Changing Americans’ Online Shopping Habits? RAND Corporation: Santa Monica, CA, USA, 2020. [Google Scholar]
- Fashion-Ecommerce. Online Apparel Industry Market US. Available online: https://www.statista.com/statistics/278890/us-apparel-and-accessories-retail-e-commerce-revenue (accessed on 8 December 2020).
- Tuunainen, V.K.; Rossi, M. eBusiness in apparel retailing industry-critical issues. In Proceedings of the ECIS 2002, Gdańsk, Poland, 6–8 June 2002; p. 136. [Google Scholar]
- De Leeuw, S.; Minguela-Rata, B.; Sabet, E.; Boter, J.; Sigurðardóttir, R. Trade-offs in managing commercial consumer returns for online apparel retail. Int. J. Oper. Prod. Manag. 2016, 36, 710–731. [Google Scholar] [CrossRef]
- Dabolina, I.; Silina, L.; Apse-Apsitis, P. Evaluation of Clothing Fit; IOP Publishing: Bristol, UK, 2018; Volume 459, p. 012077. [Google Scholar]
- Gunatilake, H.; Hidellaarachchi, D.; Perera, S.; Sandaruwan, D.; Weerasinghe, M. An ICT Based Solution for Virtual Garment Fitting for Online Market Place. Int. J. Inf. Technol. Comput. Sci. 2018, 10, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-E.; Labat, K. An exploratory study of users’ evaluations of the accuracy and fidelity of a three-dimensional garment simulation. Text. Res. J. 2012, 83, 171–184. [Google Scholar] [CrossRef]
- Petrova, A.; Ashdown, S.P. Three-dimensional body scan data analysis: Body size and shape dependence of ease values for pants’ fit. Cloth. Text. Res. J. 2008, 26, 227–252. [Google Scholar] [CrossRef]
- Ashdown, S.P.; Calhoun, E.; Lyman-Clarke, L.; Piller, F.T.; Tseng, M.M. Virtual Fit of Apparel on the Internet: Current Technology and Future Needs. In Handbook of Research in Mass Customization and Personalization; World Scientific Pub Co Pte Lt.: Singapore, 2009; Volume 2, pp. 731–748. [Google Scholar]
- Hidayati, S.C.; Hsu, C.-C.; Chang, Y.-T.; Hua, K.-L.; Fu, J.; Cheng, W.-H. What dress fits me best? Fashion recommendation on the clothing style for personal body shape. In Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Korea, 22–26 October 2018; pp. 438–446. [Google Scholar]
- Zakaria, N.; Ruznan, W.S. Developing apparel sizing system using anthropometric data: Body size and shape analysis, key dimensions, and data segmentation. In Anthropometry, Apparel Sizing and Design; Elsevier B.V.: Woodhead Publishing: Cambridge, UK, 2020; pp. 91–121. [Google Scholar]
- Connell, L.J.; Ulrich, P.V.; Brannon, E.L.; Alexander, M.; Presley, A.B. Body Shape Assessment Scale: Instrument Development Foranalyzing Female Figures. Cloth. Text. Res. J. 2006, 24, 80–95. [Google Scholar] [CrossRef]
- Pisut, G.; Connell, L.J. Fit preferences of female consumers in the USA. J. Fash. Mark. Manag. Int. J. 2007, 11, 366–379. [Google Scholar] [CrossRef]
- Sattar, H.; Pons-Moll, G.; Fritz, M. Fashion Is Taking Shape: Understanding Clothing Preference Based on Body Shape from Online Sources. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 7–11 January 2019; pp. 968–977. [Google Scholar]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Stanciu, S.G.; Xu, S.; Peng, Q.; Yan, J.; Stanciu, G.A.; Welsch, R.E.; So, P.T.C.; Csucs, G.; Yu, H. Experimenting Liver Fibrosis Diagnostic by Two Photon Excitation Microscopy and Bag-of-Features Image Classification. Sci. Rep. 2014, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Amato, G.; Falchi, F.; Gennaro, C. Geometric consistency checks for kNN based image classification relying on local features. In Proceedings of the Fourth International Conference on Similarity Search and Applications, Lipari, Italy, 30 June–1 July 2011; pp. 81–88. [Google Scholar]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuruskan, A.; Bulgun, E.Y. Identification of female body shapes based on numerical evaluations. Int. J. Cloth. Sci. Technol. 2011, 23, 46–60. [Google Scholar] [CrossRef]
- Hu, P.; Kaashki, N.N.; Dadarlat, V.; Munteanu, A. Learning to Estimate the Body Shape Under Clothing from a Single 3D Scan. IEEE Trans. Ind. Inform. 2020, 1. [Google Scholar] [CrossRef]
- Devarajan, P.; Istook, C.L. Validation of female figure identification technique (FFIT) for apparel software. J. Text. Appar. Technol. Manag. 2004, 4, 1–23. [Google Scholar]
- Manju, B.; Meenakshy, K.; Gopikakumari, R. Prostate Disease Diagnosis from CT Images Using GA Optimized SMRT Based Texture Features. Procedia Comput. Sci. 2015, 46, 1692–1699. [Google Scholar] [CrossRef] [Green Version]
- Chong, J.W.; Dao, D.; Salehizadeh, S.M.A.; McManus, D.D.; Darling, C.E.; Chon, K.H.; Mendelson, Y. Photoplethysmograph Signal Reconstruction Based on a Novel Hybrid Motion Artifact Detection–Reduction Approach. Part I: Motion and Noise Artifact Detection. Ann. Biomed. Eng. 2014, 42, 2238–2250. [Google Scholar] [CrossRef]
- Yin, L.; Annett-Hitchcock, K. Comparison of body measurements between Chinese and U.S. females. J. Text. Inst. 2019, 110, 1716–1724. [Google Scholar] [CrossRef]
- Body Shape Calculator. Available online: https://www.harperloren.com/fashion/calculate-your-body-shape/ (accessed on 16 December 2020).
- Vincent, O.; Folorunso, O. A Descriptive Algorithm for Sobel Image Edge Detection. In Proceedings of the 2009 InSITE Conference, Macon, GA, USA, 12–15 June 2009; pp. 97–107. [Google Scholar]
- Deng, G.; Cahill, L. An adaptive Gaussian filter for noise reduction and edge detection. In Proceedings of the 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA, USA, 31 October–6 November 1993; pp. 1615–1619. [Google Scholar]
- Kharlamov, A.; Podlozhnyuk, V. Image Denoising; NVIDIA: Santa Clara, CA, USA, 2007. [Google Scholar]
- Sakr, S.; Elshawi, R.; Ahmed, A.; Qureshi, W.T.; Brawner, C.; Keteyian, S.; Blaha, M.J.; Al-Mallah, M.H. Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project. PLoS ONE 2018, 13, e0195344. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, W.-L.; Grauman, K. ViBE: Dressing for Diverse Body Shapes. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, Seattle, WA, USA, 14–18 June 2020; pp. 11056–11066. [Google Scholar]
- Yadav, S.; Shukla, S. Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification. In Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28 February 2016; pp. 78–83. [Google Scholar]
- Pang, Y.; Li, W.; Yuan, Y.; Pan, J. Fully affine invariant SURF for image matching. Neurocomputing 2012, 85, 6–10. [Google Scholar] [CrossRef]
- Lindeberg, T. Scale Invariant Feature Transform. Scholarpedia 2012, 7, 10491. [Google Scholar] [CrossRef]
- Mistry, S.; Patel, A. Image stitching using Harris feature detection. Int. Res. J. Eng. Technol. 2016, 3, 2220–2226. [Google Scholar]
- Bay, H.; Tuytelaars, T.; Van Gool, L. Surf: Speeded up robust features. In Proceedings of the European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; pp. 404–417. [Google Scholar]
- Derpanis, K.G. Integral image-based representations. Dep. Comput. Sci. Eng. York Univ. Pap. 2007, 1, 1–6. [Google Scholar]
- Teke, M.; Temizel, A. Multi-spectral Satellite Image Registration Using Scale-Restricted SURF. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2310–2313. [Google Scholar]
- Fragoso, V.; Srivastava, G.; Nagar, A.; Li, Z.; Park, K.; Turk, M. Cascade of Box (CABOX) Filters for Optimal Scale Space Approximation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 24–27 June 2014; pp. 126–131. [Google Scholar]
- Sledevic, T.; Serackis, A. SURF algorithm implementation on FPGA. In Proceedings of the 2012 13th Biennial Baltic Electronics Conference, Tallinn, Estonia, 3–5 October 2012; pp. 291–294. [Google Scholar]
- Arora, G.; Dubey, A.K.; Jaffery, Z.A.; Rocha, A. Bag of feature and support vector machine based early diagnosis of skin cancer. Neural Comput. Appl. 2020, 1–8. [Google Scholar] [CrossRef]
- Mukherjee, J.; Mukhopadhyay, J.; Mitra, P. A survey on image retrieval performance of different bag of visual words indexing techniques. In Proceedings of the 2014 IEEE Students’ Technology Symposium, Kharagpur, India, 28 February–2 March 2014; pp. 99–104. [Google Scholar]
- Hu, L.-Y.; Huang, M.-W.; Ke, S.-W.; Tsai, C.-F. The distance function effect on k-nearest neighbor classification for medical datasets. SpringerPlus 2016, 5, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Van Esesn, B.C.; Awwal, A.A.S.; Asari, V.K. The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv 2018, arXiv:1803.01164 2018. [Google Scholar]
- Makkar, T.; Kumar, Y.; Dubey, A.K.; Rocha, Á.; Goyal, A. Analogizing time complexity of KNN and CNN in recognizing handwritten digits. In Proceedings of the 2017 Fourth International Conference on Image Information Processing (ICIIP), Shimla, India, 21–23 December 2017; pp. 1–6. [Google Scholar]
- Rani, K.V.; Jawhar, S.J. Novel Technology for Lung Tumor Detection Using Nanoimage. IETE J. Res. 2019, 1–15. [Google Scholar] [CrossRef]
- Liu, F.; Yang, S.; Ding, Y.; Xu, F. Single sample face recognition via BoF using multistage KNN collaborative coding. Multimed. Tools Appl. 2019, 78, 13297–13311. [Google Scholar] [CrossRef]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef]
- Ruck, D.W.; Rogers, S.K.; Kabrisky, M. Feature selection using a multilayer perceptron. J. Neural Netw. Comput. 1990, 2, 40–48. [Google Scholar]
- Istook, C.L. Female figure identification technique (ffit) for apparel part I: Describing female shapes. J. Text. Appar. Technol. Manag. 2004, 4, 1–16. [Google Scholar]
- Tabei, F.; Zaman, R.; Foysal, K.H.; Kumar, R.; Kim, Y.; Chong, J.W. A novel diversity method for smartphone camera-based heart rhythm signals in the presence of motion and noise artifacts. PLoS ONE 2019, 14, e0218248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saarijärvi, H.; Sutinen, U.-M.; Harris, L.C. Uncovering consumers’ returning behaviour: A study of fashion e-commerce. Int. Rev. Retail. Distrib. Consum. Res. 2017, 27, 284–299. [Google Scholar] [CrossRef]
Method | Accuracy |
---|---|
SVM | 72.17% |
MLP | 62.50% |
Proposed Method | 87.50% |
Confusion Matrix | Predicted Class | ||||
---|---|---|---|---|---|
Inverted Triangle | Pear | Hourglass | Rectangle | ||
Actual Class | Inverted Triangle | 100% | 0% | 0% | 0% |
Pear | 17% | 83% | 0% | 0% | |
Hourglass | 33% | 0% | 67% | 0% | |
Rectangle | 0% | 0% | 0% | 100% |
Confusion Matrix | Predicted Class | ||||
---|---|---|---|---|---|
Inverted Triangle | Pear | Hourglass | Rectangle | ||
Actual Class | Inverted Triangle | 100% | 0% | 0% | 0% |
Pear | 0% | 100% | 0% | 0% | |
Hourglass | 0% | 0% | 100% | 0% | |
Rectangle | 0% | 0% | 0% | 100% |
Criteria | Hidayati et al. [11] | Proposed Method with Bag-of-Features Model and k-NN | Proposed Method (CNN) |
---|---|---|---|
Body Shape Detection Algorithm | Measurement Based on Combination of Criteria | Image Processing and Machine Learning | Image Processing and Deep Learning |
Requires Exact Measurement | Yes | No | No |
Testing Accuracy | 76.83% | 87.5% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foysal, K.H.; Chang, H.J.; Bruess, F.; Chong, J.W. SmartFit: Smartphone Application for Garment Fit Detection. Electronics 2021, 10, 97. https://doi.org/10.3390/electronics10010097
Foysal KH, Chang HJ, Bruess F, Chong JW. SmartFit: Smartphone Application for Garment Fit Detection. Electronics. 2021; 10(1):97. https://doi.org/10.3390/electronics10010097
Chicago/Turabian StyleFoysal, Kamrul H., Hyo Jung Chang, Francine Bruess, and Jo Woon Chong. 2021. "SmartFit: Smartphone Application for Garment Fit Detection" Electronics 10, no. 1: 97. https://doi.org/10.3390/electronics10010097
APA StyleFoysal, K. H., Chang, H. J., Bruess, F., & Chong, J. W. (2021). SmartFit: Smartphone Application for Garment Fit Detection. Electronics, 10(1), 97. https://doi.org/10.3390/electronics10010097