Determining Ultrasound Arrival Time by HHT and Kurtosis in Wind Speed Measurement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of HHT-Kurtosis Method
2.1.1. Hilbert-Huang Transform
2.1.2. Kurtosis Characteristic Function Calculation
2.2. Introduction of Other Comparative Methods
3. Experiments and Results
3.1. Experimental Device
3.2. Accuracy Test under Different Signal-to-Noise Ratios
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bauer, B.O.; Houser, C.A.; Nickling, W.G. Analysis of velocity profile measurements from wind-tunnel experiments with saltation. Geomorphology 2004, 59, 81–98. [Google Scholar] [CrossRef]
- He, Y.C.; Cheung, J.C.K.; Li, Q.S.; Fu, J.Y. Accurate determination of reference wind speed and reference static pressure in wind tunnel tests. Adv. Struct. Eng. 2020, 23, 578–583. [Google Scholar] [CrossRef]
- Mohandes, M.A.; Halawani, T.O.; Rehman, S.; Hussain, A.A. Support vector machines for wind speed prediction. Renew. Energy 2004, 29, 939–947. [Google Scholar] [CrossRef]
- Ghorbani, M.A.; Khatibi, R.; Hosseini, B.; Bilgili, M. Relative importance of parameters affecting wind speed prediction using artificial neural networks. Theor. Appl. Climatol. 2013, 114, 107–114. [Google Scholar] [CrossRef]
- Deaves, D.M.; Lines, I.G. On the fitting of low mean windspeed data to the Weibull distribution. J. Wind. Eng. Ind. Aerodyn. 1997, 66, 169–178. [Google Scholar] [CrossRef]
- Gaster, M. Vortex shedding from circular cylinders at low Reynolds numbers. J. Fluid Mech. 1971, 46, 749–756. [Google Scholar] [CrossRef] [Green Version]
- Demirli, R.; Saniie, J. Model-based estimation of ultrasonic echoes part I: Analysis and algorithms. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 787–802. [Google Scholar] [CrossRef]
- Ma, B.; Teng, J.; Zhu, H.; Zhou, R.; Ju, Y.; Liu, S. Three-Dimensional Wind Measurement Based on Ultrasonic Sensor Array and Multiple Signal Classification. Sensors 2020, 20, 523. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.D.; Wang, B.Q.; Wu, Y.J. Time-Difference Ultrasonic Wind Detection Methods Based on Cross-Correlation Theory; IEEE: New York, NY, USA, 2007; pp. 165–168. [Google Scholar]
- Jiang, J.J.; Dang, W.J.; Duan, F.J.; Wang, X.Q.; Fu, X.; Li, C.Y.; Sun, Z.B.; Liu, H.; Bu, L.R. An accurate ultrasonic wind speed and direction measuring method by combining time-difference and phase-difference measurement using coded pulses combination. Appl. Acoust. 2020, 159, 8. [Google Scholar] [CrossRef]
- Kurz, J.H.; Grosse, C.U.; Reinhardt, H.W. Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete. Ultrasonics 2005, 43, 538–546. [Google Scholar] [CrossRef]
- Allen, R.V. Automatic earthquake recognition and timing from single traces. Bull. Seismol. Soc. Am. 1978, 68, 1521–1532. [Google Scholar]
- Takanami, T.; Kitagawa, G. A New Efficient Procedure For The Estimation of Onset Times Of Seismic Waves. J. Phys. Earth 1988, 36, 267–290. [Google Scholar] [CrossRef] [Green Version]
- Joa, K.; Kim, K.-H.; Kang, S.Y. Onset Time Estimation of P- and S-waves at Gyeongsan Seismic Station Using Akaike Information Criterion (AIC). J. Korean Earth Sci. Soc. 2018, 39, 593–599. [Google Scholar]
- Kirbas, I.; Peker, M. Signal detection based on empirical mode decomposition and Teager–Kaiser energy operator and its application to P and S wave arrival time detection in seismic signal analysis. Neural Comput. Appl. 2016, 28, 3035–3045. [Google Scholar] [CrossRef]
- Li, X.; Shang, X.; Wang, Z.; Dong, L.; Weng, L. Identifying P -phase arrivals with noise: An improved Kurtosis method based on DWT and STA/LTA. J. Appl. Geophys. 2016, 133, 50–61. [Google Scholar] [CrossRef]
- Molyneux, J.B.; Schmitt, D.R. First-break timing: Arrival onset times by direct correlation. Geophysics 1999, 64, 1492–1501. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.L.; Cheng, R.S.; Rui, Y.C.; Zhou, J.; Wang, H.Q.; Cai, X.; Chen, W.S. An Improved Onset Time Picking Method for Low SNR Acoustic Emission Signals. IEEE Access 2020, 8, 47756–47767. [Google Scholar] [CrossRef]
- Bouchikhi, E.H.; Choqueuse, V.; Benbouzid, M.E.H.; Charpentier, J.F.; Barakat, G. A Comparative Study of Time-Frequency Representations for Fault Detection in Wind Turbine. In Proceedings of the Iecon 2011: 37th Annual Conference on Ieee Industrial Electronics Society, Victoria, Australia, 7–10 November 2011. [Google Scholar]
- Mborah, C.; Ge, M.C. Enhancing manual P-phase arrival detection and automatic onset time picking in a noisy microseismic data in underground mines. Int. J. Min. Sci. Technol. 2018, 28, 691–699. [Google Scholar] [CrossRef]
- Zhang, B.-L.; Lv, J.; Li, J.-R. A Compound Algorithm for Parameter Estimation of Frequency Hopping Signal Based on STFT and Morlet Wavelet Transform. In Intelligent Computing Theories And Application, Pt Ii; Huang, D.S., Jo, K.H., Zhang, X.L., Eds.; Springer: Berlin, Germany, 2018; Volume 10955, pp. 174–181. [Google Scholar]
- Vincent, C.; Giebel, G.; Pinson, P.; Madsen, H. Resolving Nonstationary Spectral Information in Wind Speed Time Series Using the Hilbert-Huang Transform. J. Appl. Meteorol. Climatol. 2010, 49, 253–267. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.Z.; Ma, S.J.; Xie, R.; Chevallier, J.; Wei, Y.M. Hilbert Spectra and Empirical Mode Decomposition: A Multiscale Event Analysis Method to Detect the Impact of Economic Crises on the European Carbon Market. Comput. Econ. 2018, 52, 105–121. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.L.C.; Shih, H.H.; Zheng, Q.N.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Sabry-Rizk, M.; Romare, D.; Zgallai, W.; Grattan, K.T.V.; Oriordan, J. Higher order statistics (HOS) in signal processing are they of any use? In Proceedings of the IEEE Colloquium on Higher Order Statistics in Signal Processing: Are They of Any Use? London, UK, 22–22 May 1995. [Google Scholar]
- Porat, B.; Friedlander, B. Direction finding algorithms based on high-order statistics. IEEE Trans. Signal Process. 1991, 39, 2016–2024. [Google Scholar] [CrossRef]
- Shang, X.; Li, X.; Weng, L. Enhancing seismic P phase arrival picking based on wavelet denoising and kurtosis picker. J. Seismol. 2017, 22, 21–33. [Google Scholar] [CrossRef]
- Baillard, C.; Crawford, W.C.; Ballu, V.; Hibert, C.; Mangeney, A. An Automatic Kurtosis-Based P- and S-Phase Picker Designed for Local Seismic Networks. Bull. Seismol. Soc. Am. 2014, 104, 394–409. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Jia, J. Improved Time-of-Flight Estimation Method for Acoustic Tomography System. IEEE Trans. Instrum. Meas. 2020, 69, 974–984. [Google Scholar] [CrossRef]
- Sabbione, J.I.; Velis, D.R. A robust method for microseismic event detection based on automatic phase pickers. J. Appl. Geophys. 2013, 99, 42–50. [Google Scholar] [CrossRef]
- Earle, P.S.; Shearer, P.M. Characterization of global seismograms using an automatic-picking algorithm. Bull. Seismol. Soc. Am. 1994, 84, 366–376. [Google Scholar]
- Long, Y.; Lin, J.; Li, B.; Wang, H.C.; Chen, Z.B. Fast-AIC Method for Automatic First Arrivals Picking of Microseismic Event With Multitrace Energy Stacking Envelope Summation. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1832–1836. [Google Scholar] [CrossRef]
MSE(s2) | R-Square | |||||
---|---|---|---|---|---|---|
15 dB | 10 dB | 5 dB | 15 dB | 10 dB | 5 dB | |
STA/LTA | 1.42 × 10−9 | 1.99 × 10−9 | 2.53 × 10−9 | 0.7191 | 0.4680 | 0.2808 |
AIC | 2.78 × 10−9 | 3.00 × 10−9 | 3.08 × 10−9 | −1.0122 | −1.0825 | −0.7674 |
TKEO | 2.36 × 10−10 | 2.45 × 10−10 | 2.85 × 10−10 | 0.9372 | 0.9279 | 0.9180 |
Our method | 4.30 × 10−11 | 4.99 × 10−11 | 7.42 × 10−11 | 0.9871 | 0.9849 | 0.9751 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Li, Z.; Wu, T.; Zhang, W. Determining Ultrasound Arrival Time by HHT and Kurtosis in Wind Speed Measurement. Electronics 2021, 10, 93. https://doi.org/10.3390/electronics10010093
Liu S, Li Z, Wu T, Zhang W. Determining Ultrasound Arrival Time by HHT and Kurtosis in Wind Speed Measurement. Electronics. 2021; 10(1):93. https://doi.org/10.3390/electronics10010093
Chicago/Turabian StyleLiu, Shiyuan, Zhipeng Li, Tong Wu, and Wei Zhang. 2021. "Determining Ultrasound Arrival Time by HHT and Kurtosis in Wind Speed Measurement" Electronics 10, no. 1: 93. https://doi.org/10.3390/electronics10010093
APA StyleLiu, S., Li, Z., Wu, T., & Zhang, W. (2021). Determining Ultrasound Arrival Time by HHT and Kurtosis in Wind Speed Measurement. Electronics, 10(1), 93. https://doi.org/10.3390/electronics10010093