Design of a Wideband Doherty Power Amplifier with High Efficiency for 5G Application
Abstract
:1. Introduction
2. Doherty Power Amplifier Design
2.1. Device Analysis
2.2. Output Matching Network Design
2.3. Input Matching Network Design
2.4. Stability Analysis
3. Simulated DPA Performance
4. Measurements Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chang, G.K.; Cheng, L.; Xu, M.; Guidotti, D. Integrated fiber-wireless access architecture for mobile backhaul and fronthaul in 5G wireless data networks. In Proceedings of the 2014 IEEE Avionics, Fiber-Optics and Photonics Technology Conference (AVFOP); IEEE: New York, NY, USA, 2014; pp. 49–50. [Google Scholar]
- Kang, H.; Lee, H.; Lee, W.; Oh, H.; Lim, W.; Koo, H.; Park, C.S.; Hwang, K.C.; Lee, K.Y.; Yang, Y. Octave bandwidth Doherty power amplifier using multiple resonance circuit for the peaking amplifier. IEEE Trans. Circuits Syst. Regul. Pap. 2018, 66, 583–593. [Google Scholar] [CrossRef]
- Li, C.; You, F.; Peng, J.; Wang, J.; Haider, M.F.; He, S. Co-Design of matching sub-networks to realize broadband symmetrical Doherty with configurable back-Off region. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 1730–1734. [Google Scholar] [CrossRef]
- Abadi, M.N.A.; Golestaneh, H.; Sarbishaei, H.; Boumaiza, S. Doherty power amplifier with extended bandwidth and improved linearizability under carrier-aggregated signal stimuli. IEEE Microw. Wirel. Components Lett. 2016, 26, 358–360. [Google Scholar] [CrossRef]
- Estebsari, M.; Nasri, A.; Piacibello, A.; Ramella, C.; Camarchia, V.; Pirola, M. 3.1–3.6 GHz 22 W GaN Doherty power amplifier. In Proceedings of the 2020 23rd International Microwave and Radar Conference (MIKON); IEEE: New York, NY, USA, 2020; pp. 424–426. [Google Scholar]
- Nikandish, G.R.; Staszewski, R.B.; Zhu, A. Broadband fully integrated GaN power amplifier with minimum-inductance BPF matching and two-transistor AM-PM compensation. IEEE Trans. Circuits Syst. Regul. Pap. 2020, 67, 4211–4223. [Google Scholar] [CrossRef]
- Dehqan, A.; Toofan, S.; Medi, A. A highly efficient class-EF 2 power amplifier in GaAs pHEMT technology. Analog. Integr. Circuits Signal Process. 2017, 93, 197–203. [Google Scholar] [CrossRef]
- Muntean, V.H.; Otesteanu, M. WiMAX versus LTE—An overview of technical aspects for next generation networks technologies. In Proceedings of the 2010 9th International Symposium on Electronics and Telecommunications; IEEE: New York, NY, USA, 2010; pp. 225–228. [Google Scholar]
- Cheng, Z.; Xiong, G.; Liu, Y.; Zhang, T.; Tian, J.; Guo, Y.J. High-efficiency Doherty power amplifier with wide OPBO range for base station systems. IET Microwaves Antennas Propag. 2019, 13, 926–929. [Google Scholar] [CrossRef]
- Pengelly, R.; Fager, C.; Ozen, M. Doherty’s legacy: A history of the Doherty power amplifier from 1936 to the present day. IEEE Microw. Mag. 2016, 17, 41–58. [Google Scholar] [CrossRef]
- Naah, G.; He, S.; Shi, W.; Li, C.; Nusenu, S.Y. Harmonic-tuned continuum mode active load modulation output combiner for the design of broadband asymmetric Doherty power amplifiers. IET Microwaves Antennas Propag. 2019, 13, 1226–1234. [Google Scholar] [CrossRef]
- Yu, C.; Su, Z.; Liu, Y.; Tang, B.; Li, S. Broadband filtering high-efficiency Doherty amplifier based on a novel post-matching network. In Proceedings of the 2019 European Microwave Conference in Central Europe (EuMCE); IEEE: New York, NY, USA, 2019; pp. 212–215. [Google Scholar]
- Rubio, J.M.; Fang, J.; Camarchia, V.; Quaglia, R.; Pirola, M.; Ghione, G. 3–3.6-GHz wideband GaN Doherty power amplifier exploiting output compensation stages. IEEE Trans. Microw. Theory Tech. 2012, 60, 2543–2548. [Google Scholar] [CrossRef]
- Dehqan, A.R.; Toofan, S.; Lotfi, H. Floating bulk cascode class-E power amplifier. IEEE Trans. Circuits Syst. II Express Briefs 2018, 66, 537–541. [Google Scholar] [CrossRef]
- Quaglia, R.; Camarchia, V.; Rubio, J.J.M.; Pirola, M.; Ghione, G. A 4-W Doherty power amplifier in GaN MMIC technology for 15-GHz applications. IEEE Microw. Wirel. Components Lett. 2017, 27, 365–367. [Google Scholar] [CrossRef] [Green Version]
- Piacibello, A.; Quaglia, R.; Pirola, M.; Cripps, S. Design of an S-Band chireix outphasing power amplifier based on a systematic bandwidth limitation analysis. In Proceedings of the 2018 13th European Microwave Integrated Circuits Conference (EuMIC); IEEE: New York, NY, USA, 2018; pp. 186–189. [Google Scholar]
- Cappello, T.; Florian, C.; Barton, T.W.; Litchfield, M.; Popovic, Z. Multi-level supply-modulated Chireix outphasing for LTE signals. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS); IEEE: New York, NY, USA, 2017; pp. 1846–1849. [Google Scholar]
- Ramella, C.; Piacibello, A.; Quaglia, R.; Camarchia, V.; Pirola, M. High efficiency power amplifiers for modern mobile communications: The load-modulation approach. Electronics 2017, 6, 96. [Google Scholar] [CrossRef] [Green Version]
- Bolotov, A.; Kholyukov, R.; Varlamov, O. EER power amplifier modulator efficiency improvement using PWM with additional sigma-delta modulation. In Proceedings of the 2018Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO); IEEE: New York, NY, USA, 2018; pp. 1–4. [Google Scholar]
- Vasić, M.; Garcia, O.; Oliver, J.A.; Alou, P.; Diaz, D.; Cobos, J.A.; Gimeno, A.; Pardo, J.M.; Benavente, C.; Ortega, F.J. Efficient and linear power amplifier based on envelope elimination and restoration. IEEE Trans. Power Electron. 2011, 27, 5–9. [Google Scholar] [CrossRef]
- Jin, Q.; Ruan, X.; Ren, X.; Wang, Y.; Leng, Y.; Chi, K.T. Series–parallel-form switch-linear hybrid envelope-tracking power supply to achieve high efficiency. IEEE Trans. Ind. Electron. 2016, 64, 244–252. [Google Scholar] [CrossRef]
- Alt, A.; Hirshy, H.; Jiang, S.; Lee, K.B.; Casbon, M.A.; Chen, P.; Houston, P.A.; Tasker, P.J.; Lees, J. Analysis of gain variation with changing supply voltages in GaN HEMTs for envelope tracking power amplifiers. IEEE Trans. Microw. Theory Tech. 2019, 67, 2495–2504. [Google Scholar] [CrossRef]
- Cappello, T.; Barton, T.W.; Florian, C.; Litchfield, M.; Popovic, Z. Multilevel supply-modulated Chireix outphasing with continuous input modulation. IEEE Trans. Microw. Theory Tech. 2017, 65, 5231–5243. [Google Scholar] [CrossRef]
- Fishler, D.; Popović, Z.; Barton, T. Supply modulation behavior of a Doherty power amplifier. IEEE J. Microwaves 2021, 1, 508–512. [Google Scholar] [CrossRef]
- Giofrè, R.; Colantonio, P.; Giannini, F.; Ramella, C.; Camarchia, V.; Iqbal, M.; Pirola, M.; Quaglia, R. A comprehensive comparison between GaN MMIC Doherty and combined class-AB power amplifiers for microwave radio links. Int. J. Microw. Wirel. Technol. 2016, 8, 673. [Google Scholar] [CrossRef]
- Camarchia, V.; Colantonio, P.; Giannini, F.; Giofrè, R.; Jiang, T.; Pirola, M.; Quaglia, R.; Ramella, C. A design strategy for AM/PM compensation in GaN Doherty power amplifiers. IEEE Access 2017, 5, 22244–22251. [Google Scholar] [CrossRef]
- Li, Y.; Fang, X.; Jundi, A.; Huang, H.; Boumaiza, S. Two-port network theory-based design method for broadband class J Doherty amplifiers. IEEE Access 2019, 7, 51028–51038. [Google Scholar] [CrossRef]
- Nasri, A.; Estebsari, M.; Toofan, S.; Piacibello, A.; Ramella, C.; Camarchia, V.; Pirola, M. A 3-3.8 GHz Class-J GaN HEMT power amplifier. In Proceedings of the 2020 23rd International Microwave and Radar Conference (MIKON); IEEE: New York, NY, USA, 2020; pp. 416–419. [Google Scholar]
- Kalyan, R.; Rawat, K.; Koul, S.K. Reconfigurable and concurrent dual-band Doherty power amplifier for multiband and multistandard applications. IEEE Trans. Microw. Theory Tech. 2016, 65, 198–208. [Google Scholar] [CrossRef]
- Barakat, A.; Thian, M.; Fusco, V.; Bulja, S.; Guan, L. Toward a more generalized Doherty power amplifier design for broadband operation. IEEE Trans. Microw. Theory Tech. 2016, 65, 846–859. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Jansen, R.H. Broadband Doherty power amplifier via real frequency technique. IEEE Trans. Microw. Theory Tech. 2011, 60, 99–111. [Google Scholar] [CrossRef]
- Rubio, J.J.M.; Camarchia, V.; Pirola, M.; Quaglia, R. Design of an 87% fractional bandwidth Doherty power amplifier supported by a simplified bandwidth estimation method. IEEE Trans. Microw. Theory Tech. 2017, 66, 1319–1327. [Google Scholar] [CrossRef] [Green Version]
- Piacibello, A.; Quaglia, R.; Camarchia, V.; Ramella, C.; Pirola, M. Dual-input driving strategies for performance enhancement of a Doherty power amplifier. In Proceedings of the 2018 IEEE MTT-S International Wireless Symposium (IWS); IEEE: New York, NY, USA, 2018; pp. 1–4. [Google Scholar]
- Bathich, K.; Markos, A.Z.; Boeck, G. A wideband GaN Doherty amplifier with 35% fractional bandwidth. Eu. Microw. Conf. 2010, 1006–1009. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Ghione, G.; Pirola, M. Microwave Electronics; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Rollett, J. Stability and power-gain invariants of linear twoports. IRE Trans. Circuit Theory 1962, 9, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Ohtomo, M. Stability analysis and numerical simulation of multidevice amplifiers. IEEE Trans. Microw. Theory Tech. 1993, 41, 983–991. [Google Scholar] [CrossRef]
Ref. | Freq. (GHz) | Pout (dBm) | DE Sat. (%) | DE OBO (%) | Gain (dB) |
---|---|---|---|---|---|
[4] | 1.7–2.2 | 42.5 | 58–72 | 48–55 | 8.2–10.2 |
[9] | 2.9–3.3 | 43.9–44.7 | 70 | 40.6–44.2 | 6–11 |
[11] | 1.4–2.4 | 41.8–43.5 | 47.5–64.2 | 35.5–52 | 6–13 |
[12] | 2.2–2.6 | 43–44 | 60–65 | 45–53 | 6–10 |
[13] | 3–3.6 | 43–44 | 55–66 | 38–56 | 12 |
[31] | 2.2–3 | 40.2–41.2 | 52–68 | 30–53 | 6–10 |
[32] | 1.5–3.8 | 42.3–43.4 | 42–63 | 33–55 | 10–13.8 |
This Work | 2.8–3.6 | 43–44.2 | 62–76.5 | 44–56 | 8–13.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasri, A.; Estebsari, M.; Toofan, S.; Piacibello, A.; Pirola, M.; Camarchia, V.; Ramella, C. Design of a Wideband Doherty Power Amplifier with High Efficiency for 5G Application. Electronics 2021, 10, 873. https://doi.org/10.3390/electronics10080873
Nasri A, Estebsari M, Toofan S, Piacibello A, Pirola M, Camarchia V, Ramella C. Design of a Wideband Doherty Power Amplifier with High Efficiency for 5G Application. Electronics. 2021; 10(8):873. https://doi.org/10.3390/electronics10080873
Chicago/Turabian StyleNasri, Abbas, Motahhareh Estebsari, Siroos Toofan, Anna Piacibello, Marco Pirola, Vittorio Camarchia, and Chiara Ramella. 2021. "Design of a Wideband Doherty Power Amplifier with High Efficiency for 5G Application" Electronics 10, no. 8: 873. https://doi.org/10.3390/electronics10080873
APA StyleNasri, A., Estebsari, M., Toofan, S., Piacibello, A., Pirola, M., Camarchia, V., & Ramella, C. (2021). Design of a Wideband Doherty Power Amplifier with High Efficiency for 5G Application. Electronics, 10(8), 873. https://doi.org/10.3390/electronics10080873