Design for Ultrahigh-Density Vertical Phase Change Memory: Proposal and Numerical Investigation
Abstract
:1. Introduction
2. Modeling and Numerical Scheme
2.1. Array Architecture
2.2. Model and Solution
3. Electrothermal Simulation of PCM Cells
3.1. Characteristics of PCM Cells
3.2. Scaling Effect of Cells
- (a)
- , , the reset power , and the amorphized volume are in proportion to , while and are in inversely proportional for specific values;
- (b)
- , , , and are proportional to and an inverse trend can be observed in for specific values;
- (c)
- for cells with the same remains stable.
4. Electrothermal Simulation of PCM Arrays
4.1. Array with Diploid Unit
4.2. Array with Folder Unit
4.3. Integration Density
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xi, Y.; Gao, B.; Tang, J.; Chen, A.; Chang, M.-F.; Hu, X.S.; Spiegel, J.V.D.; Qian, H.; Wu, H. In-memory learning with analog resistive switching memory: A review and perspective. Proc. IEEE 2021, 109, 14–42. [Google Scholar] [CrossRef]
- Mikolajick, T.; Schroeder, U.; Lomenzo, P.D.; Breyer, E.T.; Mulaosmanovic, H.; Hoffmann, M.; Mittmann, T.; Mehmood, F.; Max, B.; Slesazeck, S. Next generation ferroelectric memories enabled by hafnium oxide. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 15.5.1–15.5.4. [Google Scholar]
- Aggarwal, S.; Almasi, H.; Deherrera, M.; Hughes, B.; Ikegawa, S.; Janesky, J.; Lee, H.K.; Lu, H.; Mancoff, F.B.; Nagel, K.; et al. Demonstration of a reliable 1 Gb Standalone spin-transfer torque mram for industrial applications. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 2.1.1–2.1.4. [Google Scholar]
- Noor, N.; Muneer, S.; Khan, R.S.; Gorbenko, A.; Adnane, L.; Kashem, M.T.B.; Scoggin, J.; Dirisaglik, F.; Cywar, A.; Gokirmak, A.; et al. Reset Variability in Phase Change Memory for Hardware Security Applications. IEEE Trans. Nanotech. 2020, 20, 75–82. [Google Scholar] [CrossRef]
- Noor, N.; Muneer, S.; Khan, R.S.; Gorbenko, A.; Silva, H. Enhancing Programming Variability in Multi-Bit Phase Change Memory Cells for Security. IEEE Trans. Nanotech. 2020, 19, 820–828. [Google Scholar] [CrossRef]
- Hayat, H.; Kohary, K.; Wright, C.D. Ultrahigh Storage Densities via the Scaling of Patterned Probe Phase-Change Memories. IEEE Trans. Nanotech. 2017, 16, 767–772. [Google Scholar] [CrossRef]
- Boniardi, M.; Boschker, J.E.; Momand, J.; Kooi, B.J.; Redaelli, A.; Calarco, R. Evidence for Thermal-Based Transition in Super-Lattice Phase Change Memory. Phys. Status Solidi-Rapid Res. Lett. 2019, 13, 1800634.1–1800634.6. [Google Scholar] [CrossRef]
- De Proft, A.; Garbin, D.; Donadio, G.L.; Hody, H.; Witters, T.; Lodewijks, K.; Rottenberg, X.; Goux, L.; Delhougne, R.; Kar, G.S. Carbon-based liner for reset current reduction in self-heating phase-change memory cells. IEEE Trans. Electron Devices 2020, 67, 4228–4233. [Google Scholar] [CrossRef]
- Scoggin, J.; Woods, Z.; Silva, H.; Gokirmak, A. Modeling heterogeneous melting in phase change memory devices. Appl. Phys. Lett. 2019, 114, 043502. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Li, K.; Chen, Y.; Liao, S.; Zhang, H.; Chan, M. Phase change memory cell with reconfigured electrode for lower reset voltage. IEEE J. Electron Devices Soc. 2019, 7, 1072–1079. [Google Scholar] [CrossRef]
- Attariani, H.; Wang, W.; Galek, R. A thermodynamically-consistent multi-physics framework for crystallization of phase-change material. J. Cryst. Growth 2020, 542, 125687.1–125687.7. [Google Scholar] [CrossRef]
- Wang, D.W.; Zhao, W.S.; Chen, W.; Zhu, G.; Xie, H.; Gao, P.; Yin, W.Y. Parallel simulation of fully coupled electrothermal processes in large-scale phase-change memory arrays. IEEE Trans. Electron Devices 2019, 66, 5117–5125. [Google Scholar] [CrossRef]
- Woods, Z.; Scoggin, J.; Cywar, A.; Gokirmak, A. Modeling of phase-change memory: Nucleation, growth, and amorphization dynamics during set and reset: Part II–Discrete grains. IEEE Trans. Electron Devices 2017, 64, 4472–4478. [Google Scholar] [CrossRef]
- Kwon, T.; Imran, M.; Yang, J.S. Reliability enhanced heterogeneous phase change memory architecture for performance and energy efficiency. IEEE Trans. Comput. 2021, 70, 1388–1400. [Google Scholar] [CrossRef]
- Serra, A.L.; Legevre, G.; Bourgeois, G.; Sabbione, C.; Castellani, N.; Cueto, O.; Cyrille, M.C.; Bernard, M.; Garrione, J.; Bernier, N.; et al. Innovative low-power self-nanoconfined phase-change memory. IEEE Trans. Electron Devices 2021, 68, 535–540. [Google Scholar] [CrossRef]
- Durai, S.; Raj, S.; Manivannan, A. Impact of thermal boundary resistance on the performance and scaling of phase-change memory device. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 1834–1840. [Google Scholar] [CrossRef]
- He, M.; He, D.; Qian, H.; Lin, Q.; Wan, D.; Cheng, X.; Xu, M.; Tong, H.; Miao, X. Ultra-low program current and multilevel phase change memory for high-density storage achieved by a low-current set pre-operation. IEEE Electron Device Lett. 2019, 40, 1595–1598. [Google Scholar] [CrossRef]
- Bayle, B.; Cueto, O.; Blonkowski, S.; Philippe, T.; Henry, H.; Plapp, M. Phase-field modeling of the non-congruent crystallization of a ternary Ge-Sb-Te alloy for phase-change memory applications. J. Appl. Phys. 2020, 128, 185101.1–185101.13. [Google Scholar] [CrossRef]
- Jiang, Z.; Qin, S.; Li, H.; Fujii, S.; Lee, D.; Wong, S.; Wong, H.S.P. Next-generation ultrahigh-density 3-d vertical resistive switching memory (VRSM)-Part II: Design guidelines for device, array, and architecture. IEEE Trans. Electron Devices 2019, 66, 5147–5154. [Google Scholar] [CrossRef]
- Son, K.; Cho, K.; Kim, S.; Park, S.; Jung, D.H.; Park, J.; Park, G.; Kim, S.; Shin, T.; Kim, Y.; et al. Signal integrity design and analysis of 3-D X-point memory considering crosstalk and IR drop for higher performance computing. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 858–869. [Google Scholar] [CrossRef]
- Fong, S.W.; Neumann, C.M.; Wong, H.-S. Phase-change memory-towards a storage-class memory. IEEE Trans. Electron Devices 2017, 64, 4374–4385. [Google Scholar] [CrossRef]
- Kinoshita, M.; Sasago, Y.; Minemura, H.; Anzai, Y.; Tai, M.; Fujisaki, Y.; Kusaba, S.; Morimoto, T.; Takahama, T.; Mine, T.; et al. Scalable 3-D vertical chain-cell-type phase-change memory with 4F2 poly-Si diodes. In Proceedings of the 2012 Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, 12–14 June 2012; pp. 35–36. [Google Scholar]
- Kurotsuchi, K.; Sasago, Y.; Yoshitake, H.; Minemura, H.; Anzai, Y.; Fujisaki, Y.; Takahama, T.; Takahashi, T.; Mine, T.; Shima, A.; et al. 2.8-GB/s-write and 670-MB/s-erase operations of a 3D vertical chain-cell-type phase-change-memory array. In Proceedings of the 2015 Symposium on VLSI Technology (VLSI Technology), Kyoto, Japan, 16–18 June 2015; pp. T92–T93. [Google Scholar]
- Li, Z.; Jeyasingh, R.G.D.; Lee, J.; Asheghi, M.; Wong, H.S.P.; Goodson, K.E. Electrothermal modeling and design strategies for multibit phase-change memory. IEEE Trans. Electron Devices 2012, 59, 3561–3567. [Google Scholar] [CrossRef]
- Adnane, L.; Kirisaglik, F.; Cywar, A.; Cil, K.; Zhu, Y.; Lam, C.; Anwar, A.F.M.; Gokirmak, A.; Silva, H. High temperature electrical resistivity and Seebeck coefficient of Ge2Sb2Te5 thin films. J. Appl. Phys. 2017, 122, 125104. [Google Scholar] [CrossRef]
- Gallo, M.L.; Sebastian, A. An overview of phase-change memory device physics. J. Phys. D Appl. Phys. 2020, 53, 213002.1–213002.27. [Google Scholar] [CrossRef]
- Goyal, V.; Sumant, A.V.; Teweldebrhan, D.; Balandin, A.A. Direct low-temperature integration of nanocrystalline diamond with GaN substrates for improved thermal management of high-power electronics. Adv. Funct. Mater. 2012, 22, 1525–1530. [Google Scholar] [CrossRef]
- Tavkhelidze, A.; Bibilashvili, A.; Jangidze, L.; Gorji, E. Fermi-Level Tuning of G-Doped Layers. Nanomaterials 2021, 11, 505. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.X.; Huang, L.; Wang, W.J.; Zhao, Z.G.; Zhou, L.; Chen, W.; Zhou, H.; Zhan, Q.; Kolundzija, B.; Yin, W.Y. Massively parallel electromagnetic–thermal cosimulation of large antenna arrays. IEEE Antenn. Wirel. Propag. Lett. 2020, 19, 1551–1555. [Google Scholar] [CrossRef]
- Ansari, S.U.; Hussain, M.; Mazhar, S.; Manzoor, T.; Siddiqui, K.J.; Abid, M.; Jamal, H. Mesh partitioning and efficient equation solving techniques by distributed finite element methods: A survey. Arch. Comput. Methods Eng. 2019, 26, 1–16. [Google Scholar] [CrossRef]
Parameter | Definition | Value |
---|---|---|
wcbar | Width of core insulator bar | 28 nm |
hcell | Height of memory unit | 54 nm |
tch | Thickness of poly-Si channel | 7.5 nm |
wch | Width of poly-Si channel | 24 nm |
tins | Thickness of gate insulator layer | 4 nm |
tgetd | Height of crossgate electrode | 25 nm |
wgetd | Space between two memory chain | 20 nm |
hGST | Height of storage film | 25 nm |
wGST | Width of a storage film | 24 nm |
tGST | Thickness of storage film | 2 nm |
wGST (nm) | wch (nm) | hGST (nm) | Ireset (mA) | Rreset (MΩ) | Rset (kΩ) | Rreset/Rset | Tmax (K) | Wreset (J) | Vpc (nm3) |
---|---|---|---|---|---|---|---|---|---|
12 | 12 | 15 | 0.0660 | 124.97 | 178.13 | 701.6 | 922.4 | 5.735 × 10−14 | 2.307 × 10−24 |
20 | 0.0629 | 162.43 | 231.64 | 701.2 | 922.2 | 6.537 × 10−14 | 2.974 × 10−24 | ||
25 | 0.0606 | 200.40 | 285.23 | 702.6 | 921.9 | 7.314 × 10−14 | 3.645 × 10−24 | ||
18 | 18 | 15 | 0.0926 | 83.37 | 118.74 | 702.3 | 930.6 | 7.622 × 10−14 | 5.609 × 10−24 |
20 | 0.0881 | 108.78 | 154.82 | 702.6 | 930.6 | 8.650 × 10−14 | 4.591 × 10−24 | ||
25 | 0.0849 | 134.12 | 190.65 | 703.5 | 930.6 | 9.675 × 10−14 | 5.593 × 10−24 | ||
24 | 24 | 15 | 0.1199 | 62.61 | 89.03 | 703.3 | 937.7 | 9.598 × 10−14 | 4.956 × 10−24 |
20 | 0.1137 | 81.35 | 115.84 | 702.3 | 937.7 | 1.084 × 10−13 | 6.248 × 10−24 | ||
25 | 0.1095 | 100.50 | 142.97 | 703.0 | 937.6 | 1.212 × 10−13 | 7.610 × 10−24 |
PCM Cell/Array | Ireset (mA) | Tmax (K) | Wreset (J) | Integration Level |
---|---|---|---|---|
0.1095 | 937.6 | 1.21 × 10−13 | 3.0 | |
0.0660 | 922.4 | 5.7 × 10−14 | 6.0 | |
Ref. [22] | 0.1354 | 936.2 | 1.6 × 10−13 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, X.-Q.; Zhu, J.-H.; Wang, D.-W.; Zhao, W.-S. Design for Ultrahigh-Density Vertical Phase Change Memory: Proposal and Numerical Investigation. Electronics 2022, 11, 1822. https://doi.org/10.3390/electronics11121822
Lei X-Q, Zhu J-H, Wang D-W, Zhao W-S. Design for Ultrahigh-Density Vertical Phase Change Memory: Proposal and Numerical Investigation. Electronics. 2022; 11(12):1822. https://doi.org/10.3390/electronics11121822
Chicago/Turabian StyleLei, Xin-Qing, Jia-He Zhu, Da-Wei Wang, and Wen-Sheng Zhao. 2022. "Design for Ultrahigh-Density Vertical Phase Change Memory: Proposal and Numerical Investigation" Electronics 11, no. 12: 1822. https://doi.org/10.3390/electronics11121822
APA StyleLei, X. -Q., Zhu, J. -H., Wang, D. -W., & Zhao, W. -S. (2022). Design for Ultrahigh-Density Vertical Phase Change Memory: Proposal and Numerical Investigation. Electronics, 11(12), 1822. https://doi.org/10.3390/electronics11121822