Towards Secure and Intelligent Internet of Health Things: A Survey of Enabling Technologies and Applications
Abstract
:1. Introduction
- What is IoT and its application in healthcare?
- What is BC and the applications of BC in healthcare systems?
- What is ML, and how can ML applications enhance pervasive computing-based healthcare systems?
- What are the convergence trends of IoT and BC for healthcare applications?
- What is the applicability of ML in IoT-based systems?
- What are the challenges of developing integrated healthcare platforms based on IoT, BC, and ML?
- This study presents a detailed background of IoT and BC to understand the core of IoT and BC for healthcare applications.
- This study presents the requirements of IoT in healthcare applications.
- This study provides trust and security solutions based on BC for IoT-based healthcare applications, such as remote health monitoring in smart hospitals.
- This study presents the background of IoHT and its enabling technologies.
- This study also highlights BC and ML-based solutions to address the current issues and challenges of secure and intelligent IoHT.
- Lastly, this study presents the limitations of the enabling technologies and research challenges and directions.
2. IoT Background
2.1. IoT Architectures Initiatives
2.2. Benefits and Risks of IoT Adoption
2.3. Requirements of IoT in Healthcare Applications
2.3.1. Confidentiality
2.3.2. Integrity
2.3.3. Authenticity
2.3.4. Non-Repudiation
2.3.5. Authorization
2.4. Security Challenges in IoT-Based Healthcare Systems
2.4.1. Data Volume
2.4.2. Privacy Protection
2.4.3. Resource Limitations
2.4.4. Scalability
2.4.5. Interoperability
2.4.6. Autonomous Control
2.5. Security and Intrusion Attacks in IoT Systems
2.5.1. End Device Attacks
2.5.2. Communication Channel Attacks
2.5.3. Network Protocol Attacks
2.5.4. Sensory Data Attacks
2.5.5. Software Attacks
3. Background of BC
3.1. Basics of BC Technology
3.1.1. The Data Layer
3.1.2. The Application Layer
3.1.3. Smart Contract
3.1.4. Chaincode
3.1.5. dApps
3.2. Performance Metrics of BC Application
4. Enabling Technologies for Secured IoHT
4.1. IoHT
4.1.1. Acquisition
4.1.2. Storage
4.1.3. Processing
4.1.4. Presentation
4.2. IoT-based Healthcare Applications
4.2.1. Monitoring Physiological and Pathological Signals
- Collecting movement and physiological data by data collection and sensing hardware;
- Relaying data to the remote center using communication hardware and software;
- Extracting clinically relevant information from movement and physiological data using data analysis techniques.
4.2.2. Self-Management, Wellness Monitoring, and Prevention
4.2.3. Medication Intake Monitoring and Smart Pharmaceuticals
4.2.4. Personalized Healthcare
4.2.5. Telepathology, Telemedicine, and Disease Monitoring
4.2.6. Assisted Living
4.2.7. Rehabilitation
4.3. Convergence Applications of IoT and BC
4.3.1. Hospital and Drug Management
4.3.2. Privacy Preservation in E-Health
4.3.3. mHealth Based on BC
4.3.4. Access Control in E-Health
4.3.5. E-Health Based on BC Smart Contract
- To record all user queries in the BC, a smart contract between the user interface and database is needed.
- An interface is used for communicating with the biomedical interface.
- The front-end interface is used to make health-based queries by third parties on lightweight BC.
4.4. Convergence Applications of IoT, BC, and ML
4.4.1. Elderly Care
4.4.2. Dietary Assessment
5. Future Research Directions and Relative Demerits of Existing Solutions
5.1. Integration Challenges and Solutions
- The sensor’s streaming rate is higher than that of a miner that can process blocks in BC, particularly in Bitcoin;
- Patient’s privacy is at stake as miner nodes process plain text data;
- Sensors cannot enforce access control and perform data encryption due to their limited processing and memory capacities;
- Different kinds of medical data require extra security, privacy, and QoS. In addition, sensors or miners cannot determine health data repositories because the choice of storage is subjective.
5.2. Technical Limitations of BC
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qayyum, F.; Afzal, T. Worldwide Knowledge Dissemination in Chemistry. J. Intell. Pervasive Soft Comput. 2022, 1. Available online: https://scirep.institute/journals/index.php/jipsc/article/view/4 (accessed on 24 April 2022).
- Germanakos, G.P.; Mourlas, C.; Samaras, G. A Mobile Agent Approach for Ubiquitous and Personalized Ehealth Information Systems. In Proceedings of the Workshop on ‘Personalization for e-Health’ of the 10th International Conference on User Modeling (UM 2005), Edinburgh, Scotland, UK, 24–29 July 2005; Available online: https://cgi.csc.liv.ac.uk/~floriana/UM05-eHealth/Germanakos.pdf (accessed on 24 April 2022).
- Imran; Qayyum, F.; Kim, D.-H.; Bong, S.-J.; Chi, S.-Y.; Choi, Y.-H. A Survey of Datasets, Preprocessing, Modeling Mechanisms, and Simulation Tools Based on AI for Material Analysis and Discovery. Materials 2022, 15, 1428. [Google Scholar] [CrossRef] [PubMed]
- Imran; Iqbal, N.; Kim, D.H. IoT Task Management Mechanism Based on Predictive Optimization for Efficient Energy Consumption in Smart Residential Buildings. Energy Build. 2022, 257, 111762. [Google Scholar] [CrossRef]
- Feng, Q.; He, D.; Zeadally, S.; Khan, M.K.; Kumar, N. A Survey on Privacy Protection in Blockchain System. J. Netw. Comput. Appl. 2019, 126, 45–58. [Google Scholar] [CrossRef]
- Zhu, Q.; Loke, S.W.; Trujillo-Rasua, R.; Jiang, F.; Xiang, Y. Applications of Distributed Ledger Technologies to the Internet of Things: A Survey. ACM Comput. Surv. 2019, 52, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Miglani, A.; Kumar, N.; Chamola, V.; Zeadally, S. Blockchain for Internet of Energy Management: Review, Solutions, and Challenges. Comput. Commun. 2020, 151, 395–418. [Google Scholar] [CrossRef]
- Alladi, T.; Chamola, V.; Parizi, R.M.; Choo, K.-K.R. Blockchain Applications for Industry 4.0 and Industrial IoT: A Review. IEEE Access 2019, 7, 176935–176951. [Google Scholar] [CrossRef]
- Vangala, A.; Das, A.K.; Kumar, N.; Alazab, M. Smart Secure Sensing for IoT-Based Agriculture: Blockchain Perspective. IEEE Sens. J. 2020, 21, 17591–17607. [Google Scholar] [CrossRef]
- Marwah, K.; Hajati, F. A Survey on Internet of Things in Telehealth. In Proceedings of the Complex, Intelligent and Software Intensive Systems, Asan, Korea, 1–3 July 2021; Barolli, L., Yim, K., Enokido, T., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 235–248. [Google Scholar]
- Borthakur, D.; Dubey, H.; Constant, N.; Mahler, L.; Mankodiya, K. Smart Fog: Fog Computing Framework for Unsupervised Clustering Analytics in Wearable Internet of Things. In Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017; pp. 472–476. [Google Scholar]
- Fortino, G.; Savaglio, C.; Palau, C.E.; de Puga, J.S.; Ganzha, M.; Paprzycki, M.; Montesinos, M.; Liotta, A.; Llop, M. Towards Multi-Layer Interoperability of Heterogeneous IoT Platforms: The INTER-IoT Approach. In Integration, Interconnection, and Interoperability of IoT Systems; Gravina, R., Palau, C.E., Manso, M., Liotta, A., Fortino, G., Eds.; Internet of Things; Springer International Publishing: Cham, Switzerland, 2018; pp. 199–232. ISBN 978-3-319-61300-0. [Google Scholar]
- Bhushan, B.; Khamparia, A.; Sagayam, K.M.; Sharma, S.K.; Ahad, M.A.; Debnath, N.C. Blockchain for Smart Cities: A Review of Architectures, Integration Trends and Future Research Directions. Sustain. Cities Soc. 2020, 61, 102360. [Google Scholar] [CrossRef]
- Luo, T.; Huang, J.; Kanhere, S.S.; Zhang, J.; Das, S.K. Improving IoT Data Quality in Mobile Crowd Sensing: A Cross Validation Approach. IEEE Internet Things J. 2019, 6, 5651–5664. [Google Scholar] [CrossRef]
- Hassan, M.M.; Gumaei, A.; Huda, S.; Almogren, A. Increasing the Trustworthiness in the Industrial IoT Networks Through a Reliable Cyberattack Detection Model. IEEE Trans. Ind. Inform. 2020, 16, 6154–6162. [Google Scholar] [CrossRef]
- Yamada, Y.; Shinkuma, R.; Iwai, T.; Onishi, T.; Nobukiyo, T.; Satoda, K. Temporal Traffic Smoothing for IoT Traffic in Mobile Networks. Comput. Netw. 2018, 146, 115–124. [Google Scholar] [CrossRef]
- Radhakrishnan, G.; Gopalakrishnan, V. Applications of Internet of Things (IOT) to Improve the Stability of a Grid Connected Power System Using Interline Power Flow Controller. Microprocess. Microsyst. 2020, 76, 103038. [Google Scholar] [CrossRef]
- Makhdoom, I.; Abolhasan, M.; Lipman, J.; Liu, R.P.; Ni, W. Anatomy of Threats to the Internet of Things. IEEE Commun. Surv. Tutor. 2019, 21, 1636–1675. [Google Scholar] [CrossRef]
- Ahmad, S.; Jamil, F.; Iqbal, N.; Kim, D. Optimal Route Recommendation for Waste Carrier Vehicles for Efficient Waste Collection: A Step Forward Towards Sustainable Cities. IEEE Access 2020, 8, 77875–77887. [Google Scholar] [CrossRef]
- Mohanta, B.K.; Jena, D.; Satapathy, U.; Patnaik, S. Survey on IoT Security: Challenges and Solution Using Machine Learning, Artificial Intelligence and Blockchain Technology. Internet Things 2020, 11, 100227. [Google Scholar] [CrossRef]
- Iqbal, N.; Khan, A.-N.; Imran; Rizwan, A.; Qayyum, F.; Malik, S.; Ahmad, R.; Kim, D.-H. Enhanced Time-Constraint Aware Tasks Scheduling Mechanism Based on Predictive Optimization for Efficient Load Balancing in Smart Manufacturing. J. Manuf. Syst. 2022, 64, 19–39. [Google Scholar] [CrossRef]
- Butun, I.; Österberg, P.; Song, H. Security of the Internet of Things: Vulnerabilities, Attacks, and Countermeasures. IEEE Commun. Surv. Tutor. 2020, 22, 616–644. [Google Scholar] [CrossRef] [Green Version]
- Bhushan, B.; Sahoo, C.; Sinha, P.; Khamparia, A. Unification of Blockchain and Internet of Things (BIoT): Requirements, Working Model, Challenges and Future Directions. Wirel. Netw. 2021, 27, 55–90. [Google Scholar] [CrossRef]
- Huh, S.; Cho, S.; Kim, S. Managing IoT Devices Using Blockchain Platform. In Proceedings of the 2017 19th International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea, 19–22 February 2017; pp. 464–467. [Google Scholar]
- Si, H.; Sun, C.; Li, Y.; Qiao, H.; Shi, L. IoT Information Sharing Security Mechanism Based on Blockchain Technology. Future Gener. Comput. Syst. 2019, 101, 1028–1040. [Google Scholar] [CrossRef]
- De Filippi, P.; Mannan, M.; Reijers, W. Blockchain as a Confidence Machine: The Problem of Trust & Challenges of Governance. Technol. Soc. 2020, 62, 101284. [Google Scholar] [CrossRef]
- Tariq, N.; Qamar, A.; Asim, M.; Khan, F.A. Blockchain and Smart Healthcare Security: A Survey. Procedia Comput. Sci. 2020, 175, 615–620. [Google Scholar] [CrossRef]
- Karafiloski, E.; Mishev, A. Blockchain Solutions for Big Data Challenges: A Literature Review. In Proceedings of the IEEE EUROCON 2017—17th International Conference on Smart Technologies, Ohrid, Macedonia, 6–8 July 2017; pp. 763–768. [Google Scholar]
- Iqbal, N.; Jamil, F.; Ahmad, S.; Kim, D. A Novel Blockchain-Based Integrity and Reliable Veterinary Clinic Information Management System Using Predictive Analytics for Provisioning of Quality Health Services. IEEE Access 2021, 9, 8069–8098. [Google Scholar] [CrossRef]
- Rehman, M.; Javaid, N.; Awais, M.; Imran, M.; Naseer, N. Cloud Based Secure Service Providing for IoTs Using Blockchain. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–7. [Google Scholar]
- Srivastava, G.; Parizi, R.M.; Dehghantanha, A. The Future of Blockchain Technology in Healthcare Internet of Things Security. In Blockchain Cybersecurity, Trust and Privacy; Choo, K.-K.R., Dehghantanha, A., Parizi, R.M., Eds.; Advances in Information Security; Springer International Publishing: Cham, Switzerland, 2020; pp. 161–184. ISBN 978-3-030-38181-3. [Google Scholar]
- Atlam, H.F.; Wills, G.B. Chapter One—Technical Aspects of Blockchain and IoT. In Advances in Computers; Kim, S., Deka, G.C., Zhang, P., Eds.; Role of Blockchain Technology in IoT Applications; Elsevier: Amsterdam, The Netherlands, 2019; Volume 115, pp. 1–39. [Google Scholar]
- Agrawal, R.; Verma, P.; Sonanis, R.; Goel, U.; De, A.; Kondaveeti, S.A.; Shekhar, S. Continuous Security in IoT Using Blockchain. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 6423–6427. [Google Scholar]
- Uddin, M.A.; Stranieri, A.; Gondal, I.; Balasubramanian, V. A Survey on the Adoption of Blockchain in IoT: Challenges and Solutions. Blockchain Res. Appl. 2021, 2, 100006. [Google Scholar] [CrossRef]
- Lamba, A.; Singh, S.; Balvinder, S.; Dutta, N.; Rela, S. Mitigating IoT Security and Privacy Challenges Using Distributed Ledger Based Blockchain (Dl-BC) Technology; Social Science Research Network: Rochester, NY, USA, 2017. [Google Scholar]
- Reyna, A.; Martín, C.; Chen, J.; Soler, E.; Díaz, M. On Blockchain and Its Integration with IoT. Challenges and Opportunities. Future Gener. Comput. Syst. 2018, 88, 173–190. [Google Scholar] [CrossRef]
- O’Donoghue, O.; Vazirani, A.A.; Brindley, D.; Meinert, E. Design Choices and Trade-Offs in Health Care Blockchain Implementations: Systematic Review. J. Med. Internet Res. 2019, 21, e12426. [Google Scholar] [CrossRef] [Green Version]
- de Vries, A. Bitcoin’s Growing Energy Problem. Joule 2018, 2, 801–805. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-K.; Huh, J.-H. A Study on the Improvement of Smart Grid Security Performance and Blockchain Smart Grid Perspective. Energies 2018, 11, 1973. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.A.; Stranieri, A.; Gondal, I.; Balasubramanian, V. An Efficient Selective Miner Consensus Protocol in Blockchain Oriented IoT Smart Monitoring. In Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, VIC, Australia, 13–15 February 2019; pp. 1135–1142. [Google Scholar]
- Sharma, P.K.; Kumar, N.; Park, J.H. Blockchain Technology Toward Green IoT: Opportunities and Challenges. IEEE Netw. 2020, 34, 263–269. [Google Scholar] [CrossRef]
- Zhou, Q.; Huang, H.; Zheng, Z.; Bian, J. Solutions to Scalability of Blockchain: A Survey. IEEE Access 2020, 8, 16440–16455. [Google Scholar] [CrossRef]
- Dwivedi, A.D.; Malina, L.; Dzurenda, P.; Srivastava, G. Optimized Blockchain Model for Internet of Things Based Healthcare Applications. In Proceedings of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), Budapest, Hungary, 1–3 July 2019; pp. 135–139. [Google Scholar]
- Marjani, M.; Nasaruddin, F.; Gani, A.; Karim, A.; Hashem, I.A.T.; Siddiqa, A.; Yaqoob, I. Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges. IEEE Access 2017, 5, 5247–5261. [Google Scholar] [CrossRef]
- Ermakova, T.; Erek, K.; Huenges, J.; Zarnekow, R. Cloud Computing in Healthcare—A Literature Review on Current State of Research. In Proceedings of the Americas Conference on Information Systems, Chicago, IL, USA, 15–17 August 2013. [Google Scholar]
- Shailaja, K.; Seetharamulu, B.; Jabbar, M.A. Machine Learning in Healthcare: A Review. In Proceedings of the 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March 2018; pp. 910–914. [Google Scholar]
- Panarello, A.; Tapas, N.; Merlino, G.; Longo, F.; Puliafito, A. Blockchain and IoT Integration: A Systematic Survey. Sensors 2018, 18, 2575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faust, O.; Hagiwara, Y.; Hong, T.J.; Lih, O.S.; Acharya, U.R. Deep Learning for Healthcare Applications Based on Physiological Signals: A Review. Comput. Methods Programs Biomed. 2018, 161, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kuo, T.-T.; Zavaleta Rojas, H.; Ohno-Machado, L. Comparison of Blockchain Platforms: A Systematic Review and Healthcare Examples. J. Am. Med. Inform. Assoc. 2019, 26, 462–478. [Google Scholar] [CrossRef]
- Ahmadi, H.; Arji, G.; Shahmoradi, L.; Safdari, R.; Nilashi, M.; Alizadeh, M. The Application of Internet of Things in Healthcare: A Systematic Literature Review and Classification. Univers. Access Inf. Soc. 2019, 18, 837–869. [Google Scholar] [CrossRef]
- Aggarwal, S.; Chaudhary, R.; Aujla, G.S.; Kumar, N.; Choo, K.-K.R.; Zomaya, A.Y. Blockchain for Smart Communities: Applications, Challenges and Opportunities. J. Netw. Comput. Appl. 2019, 144, 13–48. [Google Scholar] [CrossRef]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain Technology in the Energy Sector: A Systematic Review of Challenges and Opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- AbuNaser, M.; Alkhatib, A.A.A. Advanced Survey of Blockchain for the Internet of Things Smart Home. In Proceedings of the 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, 9–11 April 2019; pp. 58–62. [Google Scholar]
- Wang, Y.; Cang, S.; Yu, H. A Survey on Wearable Sensor Modality Centred Human Activity Recognition in Health Care. Expert Syst. Appl. 2019, 137, 167–190. [Google Scholar] [CrossRef]
- Qadri, Y.A.; Nauman, A.; Zikria, Y.B.; Vasilakos, A.V.; Kim, S.W. The Future of Healthcare Internet of Things: A Survey of Emerging Technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1121–1167. [Google Scholar] [CrossRef]
- Qayyum, A.; Qadir, J.; Bilal, M.; Al-Fuqaha, A. Secure and Robust Machine Learning for Healthcare: A Survey. IEEE Rev. Biomed. Eng. 2021, 14, 156–180. [Google Scholar] [CrossRef]
- Karthick, G.S.; Pankajavalli, P.B. A Review on Human Healthcare Internet of Things: A Technical Perspective. SN Comput. Sci. 2020, 1, 198. [Google Scholar] [CrossRef]
- Sworna, N.S.; Islam, A.K.M.M.; Shatabda, S.; Islam, S. Towards Development of IoT-ML Driven Healthcare Systems: A Survey. J. Netw. Comput. Appl. 2021, 196, 103244. [Google Scholar] [CrossRef]
- Yaqoob, I.; Salah, K.; Jayaraman, R.; Al-Hammadi, Y. Blockchain for Healthcare Data Management: Opportunities, Challenges, and Future Recommendations. Neural Comput. Appl. 2021. [Google Scholar] [CrossRef]
- Haghi Kashani, M.; Madanipour, M.; Nikravan, M.; Asghari, P.; Mahdipour, E. A Systematic Review of IoT in Healthcare: Applications, Techniques, and Trends. J. Netw. Comput. Appl. 2021, 192, 103164. [Google Scholar] [CrossRef]
- Imran; Ahmad, S.; Kim, D.H. A Task Orchestration Approach for Efficient Mountain Fire Detection Based on Microservice and Predictive Analysis in IoT Environment. J. Intell. Fuzzy Syst. 2021, 40, 5681–5696. [Google Scholar] [CrossRef]
- Varshney, T.; Sharma, N.; Kaushik, I.; Bhushan, B. Architectural Model of Security Threats Amp; Their Countermeasures in IoT. In Proceedings of the 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 18–19 October 2019; pp. 424–429. [Google Scholar]
- Kumar, S.A.; Vealey, T.; Srivastava, H. Security in Internet of Things: Challenges, Solutions and Future Directions. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 5772–5781. [Google Scholar]
- Khari, M.; Kumar, M.; Vij, S.; Pandey, P.; Vaishali. Internet of Things: Proposed Security Aspects for Digitizing the World. In Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March 2016; pp. 2165–2170. [Google Scholar]
- Qiu, T.; Chen, N.; Li, K.; Atiquzzaman, M.; Zhao, W. How Can Heterogeneous Internet of Things Build Our Future: A Survey. IEEE Commun. Surv. Tutor. 2018, 20, 2011–2027. Available online: https://ieeexplore.ieee.org/abstract/document/8286847 (accessed on 21 August 2021). [CrossRef]
- Imran; Kim, D.H. Artificial Intelligence-Based Modeling Mechanisms for Material Analysis and Discovery. J. Intell. Pervasive Soft Comput. 2022, 1. Available online: https://scirep.institute/journals/index.php/jipsc/article/view/2 (accessed on 24 April 2022).
- Iqbal, N.; Khan, A.N.; Khan, M.A.; Rizwan, A.; Kim, D.-H. Semantic Situation Reporting Mechanism Based on 4W’H Ontology Modeling in Battlefield. J. Intell. Pervasive Soft Comput. 2022, 1. Available online: https://scirep.institute/journals/index.php/jipsc/article/view/3 (accessed on 24 April 2022).
- SAM: The Ultimate Internet Connected Electronics Kit. Available online: https://www.kickstarter.com/projects/1842650056/sam-the-ultimate-internet-connected-electronics-ki (accessed on 24 April 2022).
- Miladinovic, I.; Schefer-Wenzl, S. A Highly Scalable Iot Architecture through Network Function Virtualization. Open J. Internet Things OJIOT 2017, 3, 127–135. [Google Scholar]
- Sobin, C. A Survey on Architecture, Protocols and Challenges in IoT. Wirel. Pers. Commun. 2020, 112, 1383–1429. [Google Scholar] [CrossRef]
- ICore. Available online: http://icore-online.org/ (accessed on 24 April 2022).
- Taylor, M. Why Elastic Scalability Matters in Network Functions Virtualization. Metaswitch, 24 February 2015. [Google Scholar]
- Mahapatra, T. Composing High-Level Stream Processing Pipelines. J. Big Data 2020, 7, 1–28. [Google Scholar] [CrossRef]
- Home—FIWARE. Available online: https://www.fiware.org/ (accessed on 24 April 2022).
- Heath, N. How IBM’s Node-RED Is Hacking Together the Internet of Things. TechRepublic, 13 March 2014. [Google Scholar]
- dweet.io. Share Your Thing—Like It Ain’t No Thang. Available online: https://dweet.io/ (accessed on 24 April 2022).
- Particle. Connect Your Internet of Things (IoT) Devices. Available online: https://www.particle.io/ (accessed on 24 April 2022).
- Ahmad, M.; Alowibdi, J.S.; Ilyas, M.U. VIoT: A First Step towards a Shared, Multi-Tenant IoT Infrastructure Architecture. In Proceedings of the 2017 IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France, 21–23 May 2017; pp. 308–313. [Google Scholar]
- Sandor, H.; Genge, B.; Sebestyen-Pal, G. Resilience in the Internet of Things: The Software Defined Networking Approach. In Proceedings of the 2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 3–5 September 2015; pp. 545–552. [Google Scholar]
- Moon, J.-H.; Shine, Y.-T. A Study of Distributed SDN Controller Based on Apache Kafka. In Proceedings of the 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), Daegu, Korea, 19–22 February 2020; pp. 44–47. [Google Scholar]
- Dwivedi, Y.K.; Janssen, M.; Slade, E.L.; Rana, N.P.; Weerakkody, V.; Millard, J.; Hidders, J.; Snijders, D. Driving Innovation through Big Open Linked Data (BOLD): Exploring Antecedents Using Interpretive Structural Modelling. Inf. Syst. Front. 2017, 19, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Kwon, D.; Hodkiewicz, M.R.; Fan, J.; Shibutani, T.; Pecht, M.G. IoT-Based Prognostics and Systems Health Management for Industrial Applications. IEEE Access 2016, 4, 3659–3670. [Google Scholar] [CrossRef]
- Iqbal, N.; Imran; Ahmad, S.; Ahmad, R.; Kim, D.-H. A Scheduling Mechanism Based on Optimization Using IoT-Tasks Orchestration for Efficient Patient Health Monitoring. Sensors 2021, 21, 5430. [Google Scholar] [CrossRef]
- Wahyudi, A.; Pekkola, S.; Janssen, M. Representational Quality Challenges of Big Data: Insights from Comparative Case Studies. In Proceedings of the Challenges and Opportunities in the Digital Era; Al-Sharhan, S.A., Simintiras, A.C., Dwivedi, Y.K., Janssen, M., Mäntymäki, M., Tahat, L., Moughrabi, I., Ali, T.M., Rana, N.P., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 520–538. [Google Scholar]
- Amanullah, M.A.; Habeeb, R.A.A.; Nasaruddin, F.H.; Gani, A.; Ahmed, E.; Nainar, A.S.M.; Akim, N.M.; Imran, M. Deep Learning and Big Data Technologies for IoT Security. Comput. Commun. 2020, 151, 495–517. [Google Scholar] [CrossRef]
- Brous, P.; Janssen, M.; Schraven, D.; Spiegeler, J.; Can Duzgun, B. Factors Influencing Adoption of IoT for Data-Driven Decision Making in Asset Management Organizations. In Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security, Porto, Portugal, 24–26 April 2017; SCITEPRESS—Science and Technology Publications: Porto, Portugal, 2017; pp. 70–79. [Google Scholar]
- Meneghello, F.; Calore, M.; Zucchetto, D.; Polese, M.; Zanella, A. IoT: Internet of Threats? A Survey of Practical Security Vulnerabilities in Real IoT Devices. IEEE Internet Things J. 2019, 6, 8182–8201. [Google Scholar] [CrossRef]
- Calvillo-Arbizu, J.; Román-Martínez, I.; Reina-Tosina, J. Internet of Things in Health: Requirements, Issues, and Gaps. Comput. Methods Programs Biomed. 2021, 208, 106231. [Google Scholar] [CrossRef]
- Sinha, P.; Rai, A.K.; Bhushan, B. Information Security Threats and Attacks with Conceivable Counteraction. In Proceedings of the 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, India, 5–6 July 2019; Volume 1, pp. 1208–1213. [Google Scholar]
- Bhushan, B.; Sahoo, G.; Rai, A.K. Man-in-the-Middle Attack in Wireless and Computer Networking—A Review. In Proceedings of the 2017 3rd International Conference on Advances in Computing, Communication Automation (ICACCA) (Fall), Dehradun, India, 15–16 September 2017; pp. 1–6. [Google Scholar]
- Gope, P.; Sikdar, B. Lightweight and Privacy-Preserving Two-Factor Authentication Scheme for IoT Devices. IEEE Internet Things J. 2019, 6, 580–589. [Google Scholar] [CrossRef]
- Xiong, J.; Ren, J.; Chen, L.; Yao, Z.; Lin, M.; Wu, D.; Niu, B. Enhancing Privacy and Availability for Data Clustering in Intelligent Electrical Service of IoT. IEEE Internet Things J. 2019, 6, 1530–1540. [Google Scholar] [CrossRef]
- Amini, M.R.; Baidas, M.W. Availability-Reliability-Stability Trade-Offs in Ultra-Reliable Energy-Harvesting Cognitive Radio IoT Networks. IEEE Access 2020, 8, 82890–82916. [Google Scholar] [CrossRef]
- Gazis, V. A Survey of Standards for Machine-to-Machine and the Internet of Things. IEEE Commun. Surv. Tutor. 2017, 19, 482–511. [Google Scholar] [CrossRef]
- Sinche, S.; Raposo, D.; Armando, N.; Rodrigues, A.; Boavida, F.; Pereira, V.; Silva, J.S. A Survey of IoT Management Protocols and Frameworks. IEEE Commun. Surv. Tutor. 2020, 22, 1168–1190. [Google Scholar] [CrossRef]
- Benkhelifa, E.; Welsh, T.; Hamouda, W. A Critical Review of Practices and Challenges in Intrusion Detection Systems for IoT: Toward Universal and Resilient Systems. IEEE Commun. Surv. Tutor. 2018, 20, 3496–3509. [Google Scholar] [CrossRef]
- Ngu, A.H.; Gutierrez, M.; Metsis, V.; Nepal, S.; Sheng, Q.Z. IoT Middleware: A Survey on Issues and Enabling Technologies. IEEE Internet Things J. 2017, 4, 1–20. [Google Scholar] [CrossRef]
- Hamad, S.A.; Sheng, Q.Z.; Zhang, W.E.; Nepal, S. Realizing an Internet of Secure Things: A Survey on Issues and Enabling Technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1372–1391. [Google Scholar] [CrossRef]
- Kouicem, D.E.; Bouabdallah, A.; Lakhlef, H. Internet of Things Security: A Top-down Survey. Comput. Netw. 2018, 141, 199–221. [Google Scholar] [CrossRef] [Green Version]
- Imran; Jamil, F.; Kim, D. An Ensemble of Prediction and Learning Mechanism for Improving Accuracy of Anomaly Detection in Network Intrusion Environments. Sustainability 2021, 13, 10057. [Google Scholar] [CrossRef]
- Bhushan, B.; Sahoo, G. Recent Advances in Attacks, Technical Challenges, Vulnerabilities and Their Countermeasures in Wireless Sensor Networks. Wirel. Pers. Commun. 2018, 98, 2037–2077. [Google Scholar] [CrossRef]
- Xu, R.; Wang, R.; Guan, Z.; Wu, L.; Wu, J.; Du, X. Achieving Efficient Detection Against False Data Injection Attacks in Smart Grid. IEEE Access 2017, 5, 13787–13798. [Google Scholar] [CrossRef]
- Khan, M.A.; Salah, K. IoT Security: Review, Blockchain Solutions, and Open Challenges. Future Gener. Comput. Syst. 2018, 82, 395–411. [Google Scholar] [CrossRef]
- Zha, X.; Zheng, K.; Zhang, D. Anti-Pollution Source Location Privacy Preserving Scheme in Wireless Sensor Networks. In Proceedings of the 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), London, UK, 27–30 June 2016; pp. 1–8. [Google Scholar]
- Sicari, S.; Rizzardi, A.; Miorandi, D.; Coen-Porisini, A. REATO: REActing to Denial of Service Attacks in the Internet of Things. Comput. Netw. 2018, 137, 37–48. [Google Scholar] [CrossRef]
- Huang, K.; Yang, L.-X.; Yang, X.; Xiang, Y.; Tang, Y.Y. A Low-Cost Distributed Denial-of-Service Attack Architecture. IEEE Access 2020, 8, 42111–42119. [Google Scholar] [CrossRef]
- Restuccia, F.; D’Oro, S.; Melodia, T. Securing the Internet of Things in the Age of Machine Learning and Software-Defined Networking. IEEE Internet Things J. 2018, 5, 4829–4842. [Google Scholar] [CrossRef] [Green Version]
- El Ioini, N.; Pahl, C. A Review of Distributed Ledger Technologies. In Proceedings of the On the Move to Meaningful Internet Systems. OTM 2018 Conferences, Valletta, Malta, 22–26 October 2018; Panetto, H., Debruyne, C., Proper, H.A., Ardagna, C.A., Roman, D., Meersman, R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 277–288. [Google Scholar]
- A Decentralized Scalable Security Framework for End-to-end Authentication of Future IoT Communication—Sheron—2020—Transactions on Emerging Telecommunications Technologies—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3815 (accessed on 22 August 2021).
- Bdiwi, R.; de Runz, C.; Faiz, S.; Cherif, A.A. A Blockchain Based Decentralized Platform for Ubiquitous Learning Environment. In Proceedings of the 2018 IEEE 18th International Conference on Advanced Learning Technologies (ICALT), Mumbai, India, 9–13 July 2018; pp. 90–92. [Google Scholar]
- Tatschner, S.; Jarisch, F.; Giehl, A.; Plaga, S.; Newe, T. The Stream Exchange Protocol: A Secure and Lightweight Tool for Decentralized Connection Establishment. Sensors 2021, 21, 4969. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Kumar, S. Blockchain Technology: Introduction, Integration and Security Issues with IoT. arXiv 2021, arXiv:2101.10921. [Google Scholar]
- Kwon, J.H. Tail Behavior of Bitcoin, the Dollar, Gold and the Stock Market Index—ScienceDirect. J. Int. Financ.Mark. Inst. Money 2020, 67, 101202. Available online: https://www.sciencedirect.com/science/article/pii/S104244312030086X (accessed on 22 August 2021). [CrossRef]
- Dasgupta, D.; Shrein, J.M.; Gupta, K.D. A Survey of Blockchain from Security Perspective. J. Bank. Financ. Technol. 2019, 3, 1–17. [Google Scholar] [CrossRef]
- Soni, S.; Bhushan, B. A Comprehensive Survey on Blockchain: Working, Security Analysis, Privacy Threats and Potential Applications. In Proceedings of the 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, India, 5–6 July 2019; Volume 1, pp. 922–926. [Google Scholar]
- Pilkington, M. Blockchain Technology: Principles and Applications. In Research Handbook on Digital Transformations; Edward Elgar Publishing: Cheltenham, UK, 2016. [Google Scholar]
- Iqbal, N.; Jamil, F.; Ahmad, S.; Kim, D. Toward Effective Planning and Management Using Predictive Analytics Based on Rental Book Data of Academic Libraries. IEEE Access 2020, 8, 81978–81996. [Google Scholar] [CrossRef]
- Review of Blockchain Technology: Types of Blockchain and Their Application|Andreev|Intellekt. Sist. Proizv. Available online: http://izdat.istu.ru/index.php/ISM/article/view/4030 (accessed on 22 August 2021).
- Ismailisufi, A.; Popović, T.; Gligorić, N.; Radonjic, S.; Šandi, S. A Private Blockchain Implementation Using Multichain Open Source Platform. In Proceedings of the 2020 24th International Conference on Information Technology (IT), Zabljak, Montenegro, 18–22 February 2020; Available online: https://ieeexplore.ieee.org/abstract/document/9070689 (accessed on 22 August 2021).
- Baliga, A.; Subhod, I.; Kamat, P.; Chatterjee, S. Performance evaluation of the quorum blockchain platform. arXiv preprint 2018, arXiv:1809.03421. [Google Scholar]
- She, W.; Gu, Z.-H.; Lyu, X.-K.; Liu, Q.; Tian, Z.; Liu, W. Homomorphic Consortium Blockchain for Smart Home System Sensitive Data Privacy Preserving. IEEE Access 2019, 7, 62058–62070. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X. Data Security Sharing and Storage Based on a Consortium Blockchain in a Vehicular Ad-Hoc Network. IEEE Access 2019, 7, 58241–58254. [Google Scholar] [CrossRef]
- Karamitsos, I.; Papadaki, M.; Barghuthi, N.B.A. Design of the Blockchain Smart Contract: A Use Case for Real Estate. J. Inf. Secur. 2018, 9, 177. [Google Scholar] [CrossRef] [Green Version]
- Glaser, F. Pervasive Decentralisation of Digital Infrastructures: A Framework for Blockchain Enabled System and Use Case Analysis. In Proceedings of the 50th Annual Hawaii International Conference on System Sciences, Hilton Waikoloa Village, HI, USA, 4–7 January 2017. [Google Scholar]
- Garewal, K.S. Merkle Trees. In Practical Blockchains and Cryptocurrencies: Speed up Your Application Development Process and Develop Distributed Applications with Confidence; Garewal, K.S., Ed.; Apress: Berkeley, CA, USA, 2020; pp. 137–148. ISBN 978-1-4842-5893-4. [Google Scholar]
- Mohamed, K.S. Cryptography Concepts: Integrity, Authentication, Availability, Access Control, and Non-Repudiation. In New Frontiers in Cryptography: Quantum, Blockchain, Lightweight, Chaotic and DNA; Mohamed, K.S., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 41–63. ISBN 978-3-030-58996-7. [Google Scholar]
- Mohanta, B.K.; Panda, S.S.; Jena, D. An Overview of Smart Contract and Use Cases in Blockchain Technology. In Proceedings of the 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bengaluru, India, 10–12 July 2018; pp. 1–4. [Google Scholar]
- Jamil, F.; Iqbal, N.; Imran; Ahmad, S.; Kim, D. Peer-to-Peer Energy Trading Mechanism Based on Blockchain and Machine Learning for Sustainable Electrical Power Supply in Smart Grid. IEEE Access 2021, 9, 39193–39217. [Google Scholar] [CrossRef]
- Hofmann, F.; Wurster, S.; Ron, E.; Böhmecke-Schwafert, M. The Immutability Concept of Blockchains and Benefits of Early Standardization. In Proceedings of the 2017 ITU Kaleidoscope: Challenges for a Data-Driven Society (ITU K), Nanjing, China, 27–29 November 2017; pp. 1–8. [Google Scholar]
- Vashi, S.; Ram, J.; Modi, J.; Verma, S.; Prakash, C. Internet of Things (IoT): A Vision, Architectural Elements, and Security Issues. In Proceedings of the 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 10–11 February 2017; pp. 492–496. [Google Scholar]
- Survey on Blockchain for Internet of Things—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0140366418306881 (accessed on 23 August 2021).
- Wong, Z.S.Y.; Zhou, J.; Zhang, Q. Artificial Intelligence for Infectious Disease Big Data Analytics. Infect. Dis. Health 2019, 24, 44–48. [Google Scholar] [CrossRef]
- Ali, M.S.; Vecchio, M.; Pincheira, M.; Dolui, K.; Antonelli, F.; Rehmani, M.H. Applications of Blockchains in the Internet of Things: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2019, 21, 1676–1717. [Google Scholar] [CrossRef]
- Dhanvijay, M.M.; Patil, S.C. Internet of Things: A Survey of Enabling Technologies in Healthcare and Its Applications. Comput. Netw. 2019, 153, 113–131. [Google Scholar] [CrossRef]
- Fuller, T.; Fox, B.; Lake, D.; Crawford, K. Improving Real-Time Vital Signs Documentation. Nurs. Manag. 2018, 49, 28–33. [Google Scholar] [CrossRef]
- Gogate, U.; Bakal, J. Healthcare Monitoring System Based on Wireless Sensor Network for Cardiac Patients. Biomed. Pharmacol. J. 2018, 11, 1681–1688. [Google Scholar] [CrossRef]
- Alam, T. mHealth Communication Framework Using Blockchain and IoT Technologies; Social Science Research Network: Rochester, NY, USA, 2020. [Google Scholar]
- Aung, M.S.H.; Alquaddoomi, F.; Hsieh, C.-K.; Rabbi, M.; Yang, L.; Pollak, J.P.; Estrin, D.; Choudhury, T. Leveraging Multi-Modal Sensing for Mobile Health: A Case Review in Chronic Pain. IEEE J. Sel. Top. Signal Process. 2016, 10, 962–974. [Google Scholar] [CrossRef] [Green Version]
- Aceto, G.; Persico, V.; Pescapé, A. Industry 4.0 and Health: Internet of Things, Big Data, and Cloud Computing for Healthcare 4.0. J. Ind. Inf. Integr. 2020, 18, 100129. [Google Scholar] [CrossRef]
- Marques, G.; Saini, J.; Pires, I.M.; Miranda, N.; Pitarma, R. Internet of Things for Enhanced Living Environments, Health and Well-Being: Technologies, Architectures and Systems. In Handbook of Wireless Sensor Networks: Issues and Challenges in Current Scenario’s; Singh, P.K., Bhargava, B.K., Paprzycki, M., Kaushal, N.C., Hong, W.-C., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2020; pp. 616–631. ISBN 978-3-030-40305-8. [Google Scholar]
- Maksimović, M. The Roles of Nanotechnology and Internet of Nano Things in Healthcare Transformation. TecnoLógicas 2017, 20, 139–153. [Google Scholar] [CrossRef] [Green Version]
- Usak, M.; Kubiatko, M.; Shabbir, M.S.; Viktorovna Dudnik, O.; Jermsittiparsert, K.; Rajabion, L. Health Care Service Delivery Based on the Internet of Things: A Systematic and Comprehensive Study. Int. J. Commun. Syst. 2020, 33, e4179. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4179 (accessed on 23 August 2021). [CrossRef]
- Santos, J.; Rodrigues, J.J.P.C.; Silva, B.M.C.; Casal, J.; Saleem, K.; Denisov, V. An IoT-Based Mobile Gateway for Intelligent Personal Assistants on Mobile Health Environments. J. Netw. Comput. Appl. 2016, 71, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Mehdi, H.; Zarrabi, H.; Zadeh, A.K.; Rahmani, A. Self-Adaptive Sampling Rate to Improve Network Lifetime Using Watchdog Sensor and Context Recognition in Wireless Body Sensor Networks. Majlesi J. Electr. Eng. 2020, 14, 11–22. [Google Scholar] [CrossRef]
- Abu Bakar, N.A.; Wan Ramli, W.M.; Hassan, N.H. The Internet of Things in Healthcare: An Overview, Challenges and Model Plan for Security Risks Management Process. Indones. J. Electr. Eng. Comput. Sci. 2019, 15, 414. [Google Scholar] [CrossRef]
- Anwar, M.; Abdullah, A.H.; Qureshi, K.N.; Majid, A.H. Wireless Body Area Networks for Healthcare Applications: An Overview. Telkomnika Telecommun. Comput. Electron. Control 2017, 15, 1088. [Google Scholar] [CrossRef] [Green Version]
- Azeez, N.A.; der Vyver, C.V. Security and Privacy Issues in E-Health Cloud-Based System: A Comprehensive Content Analysis. Egypt. Inform. J. 2019, 20, 97–108. [Google Scholar] [CrossRef]
- Lam, M.C.; Ayob, M.; Lee, J.Y.; Abdullah, N.; Hamzah, F.A.; Zahir, S.S.M. Mobile-Based Hospital Bed Management with Near Field Communication Technology: A Case Study. Eng. Technol. Appl. Sci. Res. 2020, 10, 5706–5712. [Google Scholar] [CrossRef]
- Khanna, A.; Kaur, S. Internet of Things (IoT), Applications and Challenges: A Comprehensive Review. Wirel. Pers. Commun. 2020, 114, 1687–1762. [Google Scholar] [CrossRef]
- Abidi, B.; Jilbab, A.; Mohamed, E.H. Wireless Body Area Networks: A Comprehensive Survey. J. Med. Eng. Technol. 2020, 44, 97–107. [Google Scholar] [CrossRef]
- Ibrahim, M.; Iqbal, M.A.; Aleem, M.; Islam, M.A. SIM-Cumulus: An Academic Cloud for the Provisioning of Network-Simulation-as-a-Service (NSaaS). IEEE Access 2018, 6, 27313–27323. [Google Scholar] [CrossRef]
- Khan, R.A.; Pathan, A.S.K. The State-of-the-Art Wireless Body Area Sensor Networks: A Survey. Int. Int. Distrib. Sens. Netw. 2018, 14, 1550147718768994. Available online: https://journals.sagepub.com/doi/full/10.1177/1550147718768994 (accessed on 23 August 2021). [CrossRef] [Green Version]
- Liu, Y.; Zhang, L.; Yang, Y.; Zhou, L.; Ren, L.; Wang, F.; Liu, R.; Pang, Z.; Deen, M.J. A Novel Cloud-Based Framework for the Elderly Healthcare Services Using Digital Twin. IEEE Access 2019, 7, 49088–49101. [Google Scholar] [CrossRef]
- Boumezbeur, I.; Zarour, K. Privacy Preserving Requirements for Sharing Health Data in Cloud. In Proceedings of the Information Systems and Technologies to Support Learning, Fez, Morocco, 25–27 October 2018; Rocha, Á., Serrhini, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 412–423. [Google Scholar]
- Darwish, A.; Hassanien, A.E.; Elhoseny, M.; Sangaiah, A.K.; Muhammad, K. The Impact of the Hybrid Platform of Internet of Things and Cloud Computing on Healthcare Systems: Opportunities, Challenges, and Open Problems. J. Ambient Intell. Humaniz. Comput. 2019, 10, 4151–4166. [Google Scholar] [CrossRef]
- Navarro-Ortiz, J.; Romero-Diaz, P.; Sendra, S.; Ameigeiras, P.; Ramos-Munoz, J.J.; Lopez-Soler, J.M. A Survey on 5G Usage Scenarios and Traffic Models. IEEE Commun. Surv. Tutor. 2020, 22, 905–929. [Google Scholar] [CrossRef]
- Ibrahim, M.; Nabi, S.; Baz, A.; Alhakami, H.; Raza, M.S.; Hussain, A.; Salah, K.; Djemame, K. An In-Depth Empirical Investigation of State-of-the-Art Scheduling Approaches for Cloud Computing. IEEE Access 2020, 8, 128282–128294. [Google Scholar] [CrossRef]
- Imran; Iqbal, N.; Ahmad, S.; Kim, D.H. Health Monitoring System for Elderly Patients Using Intelligent Task Mapping Mechanism in Closed Loop Healthcare Environment. Symmetry 2021, 13, 357. [Google Scholar] [CrossRef]
- Bansal, M.; Sirpal, V. Fog Computing-Based Internet of Things and Its Applications in Healthcare. J. Phys. Conf. Ser. 2021, 1916, 012041. [Google Scholar] [CrossRef]
- Muñoz, M.O.; Klatzky, R.; Wang, J.; Pillai, P.; Satyanarayanan, M.; Gross, J. Impact of Delayed Response on Wearable Cognitive Assistance. PLoS ONE 2021, 16, e0248690. [Google Scholar] [CrossRef]
- Kumari, A.; Tanwar, S.; Tyagi, S.; Kumar, N. Fog Computing for Healthcare 4.0 Environment: Opportunities and Challenges. Comput. Electr. Eng. 2018, 72, 1–13. [Google Scholar] [CrossRef]
- Ibrahim, M.; Imran, M.; Jamil, F.; Lee, Y.-J.; Kim, D.-H. EAMA: Efficient Adaptive Migration Algorithm for Cloud Data Centers (CDCs). Symmetry 2021, 13, 690. [Google Scholar] [CrossRef]
- Harerimana, G.; Jang, B.; Kim, J.W.; Park, H.K. Health Big Data Analytics: A Technology Survey. IEEE Access 2018, 6, 65661–65678. [Google Scholar] [CrossRef]
- Alonso, S.G.; de la Torre Díez, I.; Zapiraín, B.G. Predictive, Personalized, Preventive and Participatory (4P) Medicine Applied to Telemedicine and EHealth in the Literature. J. Med. Syst. 2019, 43, 140. [Google Scholar] [CrossRef] [PubMed]
- Hassan, R.; Qamar, F.; Hasan, M.K.; Aman, A.H.M.; Ahmed, A.S. Internet of Things and Its Applications: A Comprehensive Survey. Symmetry 2020, 12, 1674. [Google Scholar] [CrossRef]
- Nigar, N.; Nazim Uddin, M. An Internet of Things Enabled Intelligent System and Smart Nutrition Card to Enhance Children’s Health Consciousness. In Proceedings of the IEEE International Conference on New Trends in Engineering & Technology (ICNTET) 2018, Chennai, Tamil Nadu, India, 7–8 September 2018. [Google Scholar]
- Singh, B.; Bhattacharya, S.; Chowdhary, C.L.; Jat, D.S. A Review on Internet of Things and Its Applications in Healthcare. J. Chem. Pharm. Sci. 2017, 10, 7. [Google Scholar]
- Chelliah, R.; Wei, S.; Daliri, E.B.-M.; Rubab, M.; Elahi, F.; Yeon, S.-J.; Jo, K.H.; Yan, P.; Liu, S.; Oh, D.H. Development of Nanosensors Based Intelligent Packaging Systems: Food Quality and Medicine. Nanomaterials 2021, 11, 1515. [Google Scholar] [CrossRef]
- Thuemmler, C.; Bai, C. Health 4.0: How Virtualization and Big Data Are Revolutionizing Healthcare; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Khan, S.; Alam, M. Wearable Internet of Things for Personalized Healthcare: Study of Trends and Latent Research. In Health Informatics: A Computational Perspective in Healthcare; Patgiri, R., Biswas, A., Roy, P., Eds.; Studies in Computational Intelligence; Springer: Singapore, 2021; pp. 43–60. ISBN 9789811597350. [Google Scholar]
- Nice, E.C. Challenges for Omics Technologies in the Implementation of Personalized Medicine. Expert Rev. Precis. Med. Drug Dev. 2018, 3, 229–231. [Google Scholar] [CrossRef]
- Jamil, F.; Qayyum, F.; Alhelaly, S.; Javed, F.; Muthanna, A. Intelligent microservice based on blockchain for healthcare applications. Comput. Mater. Contin. 2021, 69, 2513–2530. [Google Scholar] [CrossRef]
- Moro Visconti, R.; Martiniello, L. Smart Hospitals and Patient-Centered Governance. Corp. Ownersh. Control. 2019, 16, 14. [Google Scholar] [CrossRef]
- Bohr, A.; Memarzadeh, K. Chapter 1—Current Healthcare, Big Data, and Machine Learning. In Artificial Intelligence in Healthcare; Bohr, A., Memarzadeh, K., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 1–24. ISBN 978-0-12-818438-7. [Google Scholar]
- Wafi, A.; Mirnezami, R. Translational –Omics: Future Potential and Current Challenges in Precision Medicine. Methods 2018, 151, 3–11. [Google Scholar] [CrossRef]
- Wang, L.; Alexander, C. Chapter 2—Big Data in Personalized Healthcare. In Big Data in Psychiatry & Neurology; Moustafa, A.A., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 35–49. ISBN 978-0-12-822884-5. [Google Scholar]
- Senel, E.; Bas, Y. Evolution of Telepathology: A Comprehensive Analysis of Global Telepathology Literature between 1986 and 2017. Turk. J. Pathol. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baba, E.; Jilbab, A.; Hammouch, A. A Health Remote Monitoring Application Based on Wireless Body Area Networks. In Proceedings of the 2018 International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 2–4 April 2018; pp. 1–4. [Google Scholar]
- Rani, A.A.V.; Baburaj, E. Secure and Intelligent Architecture for Cloud-Based Healthcare Applications in Wireless Body Sensor Networks. Int. J. Biomed. Eng. Technol. 2019, 29, 186–199. [Google Scholar] [CrossRef]
- Papadopoulos, I.; Koulouglioti, C.; Lazzarino, R.; Ali, S. Enablers and Barriers to the Implementation of Socially Assistive Humanoid Robots in Health and Social Care: A Systematic Review. BMJ Open 2020, 10, e033096. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, M.P.; Radhakrishnan, S.; Subbaraj, P. Elderly patient monitoring system using a wireless sensor network. Telemed. e-Health 2009, 15, 73–79. [Google Scholar] [CrossRef]
- Javed, A.R.; Sarwar, M.U.; Beg, M.O.; Asim, M.; Baker, T.; Tawfik, H. A Collaborative Healthcare Framework for Shared Healthcare Plan with Ambient Intelligence. Hum.-Centric Comput. Inf. Sci. 2020, 10, 40. [Google Scholar] [CrossRef]
- Sahu, M.L.; Atulkar, M.; Ahirwal, M.K.; Ahamad, A. IoT-Enabled Cloud-Based Real-Time Remote ECG Monitoring System. J. Med. Eng. Technol. 2021, 45, 473–485. [Google Scholar] [CrossRef]
- Obaidat, M.A.; Obeidat, S.; Holst, J.; Al Hayajneh, A.; Brown, J. A Comprehensive and Systematic Survey on the Internet of Things: Security and Privacy Challenges, Security Frameworks, Enabling Technologies, Threats, Vulnerabilities and Countermeasures. Computers 2020, 9, 44. [Google Scholar] [CrossRef]
- Letswamotse, B.B.; Malekian, R.; Chen, C.-Y.; Modieginyane, K.M. Software Defined Wireless Sensor Networks (SDWSN): A Review on Efficient Resources, Applications and Technologies. J. Internet Technol. 2018, 19, 1303–1313. [Google Scholar]
- Filippeschi, A.; Schmitz, N.; Miezal, M.; Bleser, G.; Ruffaldi, E.; Stricker, D. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion. Sensors 2017, 17, 1257. [Google Scholar] [CrossRef] [Green Version]
- Morishima, S.; Xu, Y.; Urashima, A.; Toriyama, T. Human Body Skin Temperature Prediction Based on Machine Learning. Artif. Life Robot. 2021, 26, 103–108. [Google Scholar] [CrossRef]
- Wahid, F.; Fayaz, M.; Aljarbouh, A.; Mir, M.; Aamir, M.; Imran. Energy Consumption Optimization and User Comfort Maximization in Smart Buildings Using a Hybrid of the Firefly and Genetic Algorithms. Energies 2020, 13, 4363. [Google Scholar] [CrossRef]
- Fernández-Caramés, T.M.; Fraga-Lamas, P. A Review on the Use of Blockchain for the Internet of Things. IEEE Access 2018, 6, 32979–33001. [Google Scholar] [CrossRef]
- Ghaffar, Z.; Alshahrani, A.; Fayaz, M.; Alghamdi, A.M.; Gwak, J. A Topical Review on Machine Learning, Software Defined Networking, Internet of Things Applications: Research Limitations and Challenges. Electronics 2021, 10, 880. [Google Scholar] [CrossRef]
- Mishra, S.S.; Rasool, A. IoT Health Care Monitoring and Tracking: A Survey. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019; pp. 1052–1057. [Google Scholar]
- Harbi, Y.; Aliouat, Z.; Harous, S.; Bentaleb, A.; Refoufi, A. A Review of Security in Internet of Things. Wirel. Pers. Commun. 2019, 108, 325–344. [Google Scholar] [CrossRef]
- Panchatcharam, P.; Vivekanandan, S. Internet of Things (IOT) in Healthcare—Smart Health and Surveillance, Architectures, Security Analysis and Data Transfer: A Review. Int. J. Softw. Innov. IJSI 2019, 7, 21–40. [Google Scholar] [CrossRef]
- Atlam, H.F.; Alenezi, A.; Alassafi, M.O.; Wills, G. Blockchain with Internet of Things: Benefits, Challenges, and Future Directions. Int. J. Intell. Syst. Appl. 2018, 10, 40–48. [Google Scholar] [CrossRef]
- Dai, H.-N.; Zheng, Z.; Zhang, Y. Blockchain for Internet of Things: A Survey. IEEE Internet Things J. 2019, 6, 8076–8094. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhu, X.; Ni, Y.; Gu, L.; Zhu, H. Blockchain for the IoT and Industrial IoT: A Review. Internet Things 2020, 10, 100081. [Google Scholar] [CrossRef]
- Makhdoom, I.; Abolhasan, M.; Abbas, H.; Ni, W. Blockchain’s Adoption in IoT: The Challenges, and a Way Forward. J. Netw. Comput. Appl. 2019, 125, 251–279. [Google Scholar] [CrossRef]
- Ferrag, M.A.; Derdour, M.; Mukherjee, M.; Derhab, A.; Maglaras, L.; Janicke, H. Blockchain Technologies for the Internet of Things: Research Issues and Challenges. IEEE Internet Things J. 2019, 6, 2188–2204. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.; Zaman, U.; Imran; Imtiaz, J.; Fayaz, M.; Gwak, J. Comprehensive Survey of IoT, Machine Learning, and Blockchain for Health Care Applications: A Topical Assessment for Pandemic Preparedness, Challenges, and Solutions. Electronics 2021, 10, 2501. [Google Scholar] [CrossRef]
- Dorri, A.; Kanhere, S.S.; Jurdak, R. Blockchain in Internet of Things: Challenges and Solutions. arXiv 2016, arXiv:1608.05187. [Google Scholar]
- Zheng, X.; Zhu, Y.; Si, X. A Survey on Challenges and Progresses in Blockchain Technologies: A Performance and Security Perspective. Appl. Sci. 2019, 9, 4731. [Google Scholar] [CrossRef] [Green Version]
- Casino, F.; Politou, E.; Alepis, E.; Patsakis, C. Immutability and Decentralized Storage: An Analysis of Emerging Threats. IEEE Access 2020, 8, 4737–4744. [Google Scholar] [CrossRef]
- Pan, X.; Pan, X.; Song, M.; Ai, B.; Ming, Y. Blockchain Technology and Enterprise Operational Capabilities: An Empirical Test. Int. J. Inf. Manag. 2020, 52, 101946. [Google Scholar] [CrossRef]
- Buterin: On Settlement Finality—Google Scholar. Available online: https://scholar.google.com/scholar_lookup?title=On%20Settlement%20Finality&publication_year=2016&author=Vitalik%20Buterin (accessed on 21 August 2021).
- Min, X.; Li, Q.; Liu, L.; Cui, L. A Permissioned Blockchain Framework for Supporting Instant Transaction and Dynamic Block Size. In Proceedings of the 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016; pp. 90–96. [Google Scholar]
- Ramachandran, G.S.; Krishnamachari, B. Blockchain for the IoT: Opportunities and Challenges. arXiv 2018, arXiv:180502818. [Google Scholar]
- Nguyen, D.C.; Pathirana, P.N.; Ding, M.; Seneviratne, A. Blockchain for Secure EHRs Sharing of Mobile Cloud Based E-Health Systems. IEEE Access 2019, 7, 66792–66806. [Google Scholar] [CrossRef]
- Zhang, A.; Lin, X. Towards Secure and Privacy-Preserving Data Sharing in e-Health Systems via Consortium Blockchain. J. Med. Syst. 2018, 42, 140. [Google Scholar] [CrossRef]
- Xia, Q.; Sifah, E.B.; Asamoah, K.O.; Gao, J.; Du, X.; Guizani, M. MeDShare: Trust-Less Medical Data Sharing Among Cloud Service Providers via Blockchain. IEEE Access 2017, 5, 14757–14767. [Google Scholar] [CrossRef]
- Gordon, W.J.; Catalini, C. Blockchain Technology for Healthcare: Facilitating the Transition to Patient-Driven Interoperability. Comput. Struct. Biotechnol. J. 2018, 16, 224–230. [Google Scholar] [CrossRef]
- Omar, A.A.; Bhuiyan, M.Z.A.; Basu, A.; Kiyomoto, S.; Rahman, M.S. Privacy-Friendly Platform for Healthcare Data in Cloud Based on Blockchain Environment. Future Gener. Comput. Syst. 2019, 95, 511–521. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, N.; Zhou, P. GuardHealth: Blockchain Empowered Secure Data Management and Graph Convolutional Network Enabled Anomaly Detection in Smart Healthcare. J. Parallel Distrib. Comput. 2020, 142, 1–12. Available online: https://www.sciencedirect.com/science/article/pii/S0743731519308470 (accessed on 24 August 2021). [CrossRef]
- Celesti, A.; Ruggeri, A.; Fazio, M.; Galletta, A.; Villari, M.; Romano, A. Blockchain-Based Healthcare Workflow for Tele-Medical Laboratory in Federated Hospital IoT Clouds. Sensors 2020, 20, 2590. [Google Scholar] [CrossRef] [PubMed]
- Jamil, F.; Kahng, H.K.; Kim, S.; Kim, D.-H. Towards Secure Fitness Framework Based on IoT-Enabled Blockchain Network Integrated with Machine Learning Algorithms. Sensors 2021, 21, 1640. [Google Scholar] [CrossRef]
- Griggs, K.N.; Ossipova, O.; Kohlios, C.P.; Baccarini, A.N.; Howson, E.A.; Hayajneh, T. Healthcare Blockchain System Using Smart Contracts for Secure Automated Remote Patient Monitoring. J. Med. Syst. 2018, 42, 130. [Google Scholar] [CrossRef]
- Jamil, F.; Ahmad, S.; Iqbal, N.; Kim, D.-H. Towards a Remote Monitoring of Patient Vital Signs Based on IoT-Based Blockchain Integrity Management Platforms in Smart Hospitals. Sensors 2020, 20, 2195. [Google Scholar] [CrossRef] [Green Version]
- Sukhwani, H.; Wang, N.; Trivedi, K.S.; Rindos, A. Performance Modeling of Hyperledger Fabric (Permissioned Blockchain Network). In Proceedings of the 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 1–3 November 2018; pp. 1–8. [Google Scholar]
- Aneiros, A.; Hill, J.W.; Hogan, P.R. Law and the Healthcare Crisis: The Impact of Medical Malpractice and Payment Systems on Physician Compensation and Workload as Antecedents of Physician Shortages—Analysis, Implications, and Reform Solutions; Social Science Research Network: Rochester, NY, USA, 2021. [Google Scholar]
- Pawar, P.; Parolia, N.; Shinde, S.; Edoh, T.O.; Singh, M. EHealthChain—A Blockchain-Based Personal Health Information Management System. Ann. Telecommun. 2022, 77, 33–45. [Google Scholar] [CrossRef]
- Hossein, K.M.; Esmaeili, M.E.; Dargahi, T.; Khonsari, A. Blockchain-Based Privacy-Preserving Healthcare Architecture. In Proceedings of the 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 5–8 May 2019; pp. 1–4. [Google Scholar]
- Yogeshwar, A.; Kamalakkannan, S. Healthcare Domain in IoT with Blockchain Based Security—A Researcher’s Perspectives. In Proceedings of the 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 1–9. [Google Scholar]
- Tariq, N.; Asim, M.; Al-Obeidat, F.; Zubair Farooqi, M.; Baker, T.; Hammoudeh, M.; Ghafir, I. The Security of Big Data in Fog-Enabled IoT Applications Including Blockchain: A Survey. Sensors 2019, 19, 1788. [Google Scholar] [CrossRef] [Green Version]
- Myat, S.M.; Soe, T.N. Preserving the Privacy for University Data Using Blockchain and Attribute-Based Encryption. In Proceedings of the 2020 IEEE Conference on Computer Applications (ICCA), Yangon, Myanmar, 27–28 February 2020; pp. 1–5. [Google Scholar]
- Alaba, F.A.; Othman, M.; Hashem, I.A.T.; Alotaibi, F. Internet of Things Security: A Survey. J. Netw. Comput. Appl. 2017, 88, 10–28. [Google Scholar] [CrossRef]
- Imran; Ahmad, S.; Kim, D. Design and Implementation of Thermal Comfort System based on Tasks Allocation Mechanism in Smart Homes. Sustainability 2019, 11, 5849. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zheng, X.; Tang, C. Lightweight Distributed Secure Data Management System for Health Internet of Things. J. Netw. Comput. Appl. 2017, 89, 26–37. [Google Scholar] [CrossRef]
- Verma, S. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Vikalpa 2019, 44, 97–98. [Google Scholar] [CrossRef]
- Ahmad, S.; Kim, D.H. Quantum GIS Based Descriptive and Predictive Data Analysis for Effective Planning of Waste Management. IEEE Access 2020, 8, 46193–46205. [Google Scholar] [CrossRef]
- Jirkovskỳ, V.; Obitko, M.; Mařík, V. Understanding Data Heterogeneity in the Context of Cyber-Physical Systems Integration. IEEE Trans. Ind. Inform. 2016, 13, 660–667. [Google Scholar] [CrossRef]
- Palanisamy, V.; Thirunavukarasu, R. Implications of Big Data Analytics in Developing Healthcare Frameworks—A Review. J. King Saud Univ. Comput. Inf. Sci. 2019, 31, 415–425. [Google Scholar] [CrossRef]
- Chang, H.; Choi, M. Big Data and Healthcare: Building an Augmented World. Healthc. Inform. Res. 2016, 22, 153–155. [Google Scholar] [CrossRef] [Green Version]
- Ali, O.; Shrestha, A.; Soar, J.; Wamba, S.F. Cloud Computing-Enabled Healthcare Opportunities, Issues, and Applications: A Systematic Review. Int. J. Inf. Manag. 2018, 43, 146–158. [Google Scholar] [CrossRef]
- Clim, A.; Zota, R.D.; Constantinescu, R. Data Exchanges Based on Blockchain in M-Health Applications. Procedia Comput. Sci. 2019, 160, 281–288. [Google Scholar] [CrossRef]
- Fernández-Caramés, T.M.; Fraga-Lamas, P. Design of a Fog Computing, Blockchain and IoT-Based Continuous Glucose Monitoring System for Crowdsourcing MHealth. Proceedings 2018, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Botha, A.; Herselman, M.; Loots, G. Blockchain as an Enabler for Public MHealth Solutions in South Africa. In Proceedings of the 2017 IST-Africa Week Conference (IST-Africa), Windhoek, Namibia, 31 May–2 June 2017; pp. 1–8. [Google Scholar]
- Dias, J.P.; Sereno Ferreira, H.; Martins, Â. A Blockchain-Based Scheme for Access Control in e-Health Scenarios. In Proceedings of the Tenth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2018), Porto, Portugal, 13–15 December 2018; Madureira, A.M., Abraham, A., Gandhi, N., Silva, C., Antunes, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 238–247. [Google Scholar]
- Gan, C.; Saini, A.; Zhu, Q.; Xiang, Y.; Zhang, Z. Blockchain-Based Access Control Scheme with Incentive Mechanism for EHealth Systems: Patient as Supervisor. Multimed. Tools Appl. 2021, 80, 30605–30621. [Google Scholar] [CrossRef]
- Sookhak, M.; Jabbarpour, M.R.; Safa, N.S.; Yu, F.R. Blockchain and Smart Contract for Access Control in Healthcare: A Survey, Issues and Challenges, and Open Issues. J. Netw. Comput. Appl. 2021, 178, 102950. [Google Scholar] [CrossRef]
- Kubendiran, M.; Singh, S.; Sangaiah, A.K. Enhanced Security Framework for E-Health Systems Using Blockchain. J. Inf. Process. Syst. 2019, 15, 239–250. [Google Scholar] [CrossRef]
- Franks, P.C. Implications of Blockchain Distributed Ledger Technology for Records Management and Information Governance Programs. Rec. Manag. J. 2020, 30, 287–299. [Google Scholar] [CrossRef]
- Mendu, M.; Krishna, B.; Mohmmad, S.; Sharvani, Y.; Reddy, C.V.K. Secure Deployment of Decentralized Cloud in Blockchain Environment Using Inter-Planetary File System. IOP Conf. Ser. Mater. Sci. Eng. 2020, 981, 022037. [Google Scholar] [CrossRef]
- Kirwan, M.; Mee, B.; Clarke, N.; Tanaka, A.; Manaloto, L.; Halpin, E.; Gibbons, U.; Cullen, A.; McGarrigle, S.; Connolly, E.M.; et al. What GDPR and the Health Research Regulations (HRRs) Mean for Ireland: “Explicit Consent”—A Legal Analysis. Ir. J. Med. Sci. 2021, 190, 515–521. [Google Scholar] [CrossRef]
- Shuaib, M.; Alam, S.; Shabbir Alam, M.; Shahnawaz Nasir, M. Compliance with HIPAA and GDPR in Blockchain-Based Electronic Health Record. Mater. Today Proc. 2021, 158. [Google Scholar] [CrossRef]
- Eberhardt, J.; Tai, S. On or off the Blockchain? Insights on Off-Chaining Computation and Data. In Proceedings of the Service-Oriented and Cloud Computing; De Paoli, F., Schulte, S., Broch Johnsen, E., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 3–15. [Google Scholar]
- Zheng, X.; Mukkamala, R.R.; Vatrapu, R.; Ordieres-Mere, J. Blockchain-Based Personal Health Data Sharing System Using Cloud Storage. In Proceedings of the 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom), Ostrava, Czech Republic, 17–20 September 2018; pp. 1–6. [Google Scholar]
- Vora, J.; Nayyar, A.; Tanwar, S.; Tyagi, S.; Kumar, N.; Obaidat, M.S.; Rodrigues, J.J.P.C. BHEEM: A Blockchain-Based Framework for Securing Electronic Health Records. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Blockchain for Healthcare and Medical Systems: Security & Forensics Book Chapter|IGI Global. Available online: https://www.igi-global.com/chapter/blockchain-for-healthcare-and-medical-systems/280854 (accessed on 24 August 2021).
- Ge, C.; Liu, Z.; Fang, L. A Blockchain Based Decentralized Data Security Mechanism for the Internet of Things. J. Parallel Distrib. Comput. 2020, 141, 1–9. [Google Scholar] [CrossRef]
- McKnight, M. IOT, Industry 4.0, Industrial IOT… Why Connected Devices Are the Future of Design. KnE Eng. 2017, 2017, 197–202. [Google Scholar] [CrossRef]
- Shen, B.; Guo, J.; Yang, Y. MedChain: Efficient Healthcare Data Sharing via Blockchain. Appl. Sci. 2019, 9, 1207. [Google Scholar] [CrossRef] [Green Version]
- Bodkhe, U.; Tanwar, S.; Bhattacharya, P.; Verma, A. Blockchain Adoption for Trusted Medical Records in Healthcare 4.0 Applications: A Survey. In Proceedings of the Second International Conference on Computing, Communications, and Cyber-Security, Delhi, India, 3–4 October 2020; Springer: Singapore, 2021; pp. 759–774. [Google Scholar]
- Khatoon, A. A Blockchain-Based Smart Contract System for Healthcare Management. Electronics 2020, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Hathaliya, J.; Sharma, P.; Tanwar, S.; Gupta, R. Blockchain-Based Remote Patient Monitoring in Healthcare 4.0. In Proceedings of the 2019 IEEE 9th International Conference on Advanced Computing (IACC), Tiruchirappalli, India, 13–14 December 2019; pp. 87–91. [Google Scholar]
- Hang, L.; Choi, E.; Kim, D.-H. A Novel EMR Integrity Management Based on a Medical Blockchain Platform in Hospital. Electronics 2019, 8, 467. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.; Karim, Y.; Hasan, R. FIF-IoT: A Forensic Investigation Framework for IoT Using a Public Digital Ledger. In Proceedings of the 2018 IEEE International Congress on Internet of Things (ICIOT), San Francisco, CA, USA, 2–7 July 2018; pp. 33–40. [Google Scholar]
- Thampi, S.M.; Trajkovic, L.; Mitra, S.; Nagabhushan, P.; El-Alfy, E.-S.M.; Bojkovic, Z.; Mishra, D. Intelligent Systems, Technologies and Applications: Proceedings of Fifth ISTA 2019, India; Springer Nature: Berlin, Germany, 2020; ISBN 9789811539145. [Google Scholar]
- Wang, Z.; Wang, L.; Xiao, F.; Chen, Q.; Lu, L.; Hong, J. A Traditional Chinese Medicine Traceability System Based on Lightweight Blockchain. J. Med. Internet Res. 2021, 23, e25946. [Google Scholar] [CrossRef]
- Almulhim, M.; Islam, N.; Zaman, N. A Lightweight and Secure Authentication Scheme for IoT Based E-Health Applications. Int. J. Comput. Sci. Netw. Secur. 2019, 19, 14. [Google Scholar]
- Tahir, M.; Sardaraz, M.; Muhammad, S.; Saud Khan, M. A Lightweight Authentication and Authorization Framework for Blockchain-Enabled IoT Network in Health-Informatics. Sustainability 2020, 12, 6960. [Google Scholar] [CrossRef]
- Khalid, U.; Asim, M.; Baker, T.; Hung, P.C.K.; Tariq, M.A.; Rafferty, L. A Decentralized Lightweight Blockchain-Based Authentication Mechanism for IoT Systems. Clust. Comput. 2020, 23, 2067–2087. [Google Scholar] [CrossRef]
- Gupta, D.S.; Islam, S.H.; Obaidat, M.S.; Karati, A.; Sadoun, B. LAAC: Lightweight Lattice-Based Authentication and Access Control Protocol for E-Health Systems in IoT Environments. IEEE Syst. J. 2020, 15, 3620–3627. [Google Scholar] [CrossRef]
- Ray, P.P.; Dash, D.; Salah, K.; Kumar, N. Blockchain for IoT-Based Healthcare: Background, Consensus, Platforms, and Use Cases. IEEE Syst. J. 2021, 15, 85–94. [Google Scholar] [CrossRef]
- Lee, C.H.; Yoon, H.-J. Medical Big Data: Promise and Challenges. Kidney Res. Clin. Pract. 2017, 36, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Jagadeeswari, V.; Subramaniyaswamy, V.; Logesh, R.; Vijayakumar, V. A Study on Medical Internet of Things and Big Data in Personalized Healthcare System. Health Inf. Sci. Syst. 2018, 6, 14. [Google Scholar] [CrossRef]
- Ahmad, S.; Imran; Iqbal, N.; Jamil, F.; Kim, D. Optimal Policy-Making for Municipal Waste Management Based on Predictive Model Optimization. IEEE Access 2020, 8, 218458–218469. [Google Scholar] [CrossRef]
- Imran; Iqbal, N.; Ahmad, S.; Kim, D.H. Towards Mountain Fire Safety Using Fire Spread Predictive Analytics and Mountain Fire Containment in IoT Environment. Sustainability 2021, 13, 2461. [Google Scholar] [CrossRef]
- Imran, I.; Zaman, U.; Waqar, M.; Zaman, A. Using Machine Learning Algorithms for Housing Price Prediction: The Case of Islamabad Housing Data. Soft Comput. Mach. Intell. 2021, 1, 11–23. [Google Scholar]
- Men, L.; Ilk, N.; Tang, X.; Liu, Y. Multi-Disease Prediction Using LSTM Recurrent Neural Networks. Expert Syst. Appl. 2021, 177, 114905. Available online: https://www.sciencedirect.com/science/article/pii/S0957417421003468 (accessed on 24 August 2021). [CrossRef]
- Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent Neural Networks for Multivariate Time Series with Missing Values. Sci. Rep. 2018, 8, 6085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, A.E.; Ghassemi, M.M.; Nemati, S.; Niehaus, K.E.; Clifton, D.A.; Clifford, G.D. Machine Learning and Decision Support in Critical Care. Proc. IEEE 2016, 104, 444–466. [Google Scholar] [CrossRef] [Green Version]
- Che, Z.; Liu, Y. Deep Learning Solutions to Computational Phenotyping in Health Care. In Proceedings of the 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans, LA, USA, 18–21 November 2017; pp. 1100–1109. [Google Scholar]
- Hu, Y.; Lee, V.C.S.; Tan, K. An Application of Convolutional Neural Networks for the Early Detection of Late-Onset Neonatal Sepsis. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [Google Scholar]
- Jubair, F.; Al-karadsheh, O.; Malamos, D.; Al Mahdi, S.; Saad, Y.; Hassona, Y. A novel lightweight deep convolutional neural network for early detection of oral cancer. Oral Dis. 2022, 28, 1123–1130. [Google Scholar] [CrossRef]
- Shah, S.A.; Ren, A.; Fan, D.; Zhang, Z.; Zhao, N.; Yang, X.; Luo, M.; Wang, W.; Hu, F.; Rehman, M.U.; et al. Internet of Things for Sensing: A Case Study in the Healthcare System. Appl. Sci. 2018, 8, 508. [Google Scholar] [CrossRef] [Green Version]
- Chhetri, S.; Alsadoon, A.; Al-Dala’in, T.; Prasad, P.W.C.; Rashid, T.A.; Maag, A. Deep Learning for Vision-based Fall Detection System: Enhanced Optical Dynamic Flow. Comput. Intell. 2021, 37, 578–595. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1111/coin.12428 (accessed on 23 August 2021). [CrossRef]
- Li, X.; Pang, T.; Liu, W.; Wang, T. Fall Detection for Elderly Person Care Using Convolutional Neural Networks. In Proceedings of the 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 14–16 October 2017; pp. 1–6. [Google Scholar]
- Santos, G.L.; Endo, P.T.; de Monteiro, K.H.C.; da Rocha, E.S.; Silva, I.; Lynn, T. Accelerometer-Based Human Fall Detection Using Convolutional Neural Networks. Sensors 2019, 19, 1644. [Google Scholar] [CrossRef] [Green Version]
- Şengül, G.; Karakaya, M.; Misra, S.; Abayomi-Alli, O.O.; Damaševičius, R. Deep learning based fall detection using smartwatches for healthcare applications. Biomed. Signal Process. Control 2022, 71, 103242. [Google Scholar] [CrossRef]
- Torti, E.; Fontanella, A.; Musci, M.; Blago, N.; Pau, D.; Leporati, F.; Piastra, M. Embedded Real-Time Fall Detection with Deep Learning on Wearable Devices. In Proceedings of the 2018 21st Euromicro Conference on Digital System Design (DSD), Prague, Czech Republic, 29–31 August 2018; pp. 405–412. [Google Scholar]
- Mauldin, T.R.; Canby, M.E.; Metsis, V.; Ngu, A.H.H.; Rivera, C.C. SmartFall: A Smartwatch-Based Fall Detection System Using Deep Learning. Sensors 2018, 18, 3363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, B.; Grimm, L.J.; Mazurowski, M.A.; Baker, J.A.; Marks, J.R.; King, L.M.; Maley, C.C.; Hwang, E.S.; Lo, J.Y. Prediction of Occult Invasive Disease in Ductal Carcinoma in Situ Using Deep Learning Features. J. Am. Coll. Radiol. 2018, 15, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Manzanera, O.M.; Meles, S.K.; Leenders, K.L.; Renken, R.J.; Pagani, M.; Arnaldi, D.; Nobili, F.; Obeso, J.; Oroz, M.R.; Morbelli, S.; et al. Scaled Subprofile Modeling and Convolutional Neural Networks for the Identification of Parkinson’s Disease in 3D Nuclear Imaging Data. Int. J. Neural Syst. 2019, 29, 1950010. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ding, H.; Bidgoli, F.A.; Zhou, B.; Iribarren, C.; Molloi, S.; Baldi, P. Detecting Cardiovascular Disease from Mammograms With Deep Learning. IEEE Trans. Med. Imaging 2017, 36, 1172–1181. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Cao, Y.; Luo, Y.; Chen, G.; Vokkarane, V.; Yunsheng, M.; Chen, S.; Hou, P. A New Deep Learning-Based Food Recognition System for Dietary Assessment on An Edge Computing Service Infrastructure. IEEE Trans. Serv. Comput. 2018, 11, 249–261. [Google Scholar] [CrossRef]
- Lu, Y.; Stathopoulou, T.; Vasiloglou, M.F.; Pinault, L.F.; Kiley, C.; Spanakis, E.K.; Mougiakakou, S. goFOODTM: An Artificial Intelligence System for Dietary Assessment. Sensors 2020, 20, 4283. [Google Scholar] [CrossRef]
- Liu, C.; Cao, Y.; Luo, Y.; Chen, G.; Vokkarane, V.; Ma, Y. Deepfood: Deep Learning-Based Food Image Recognition for Computer-Aided Dietary Assessment. In Proceedings of the International Conference on Smart Homes and Health Telematics, Wuhan, China, 25–27 May 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 37–48. [Google Scholar]
- Lu, N.; Wu, Y.; Feng, L.; Song, J. Deep Learning for Fall Detection: Three-Dimensional CNN Combined with LSTM on Video Kinematic Data. IEEE J. Biomed. Health Inform. 2018, 23, 314–323. [Google Scholar] [CrossRef]
- Nait Aicha, A.; Englebienne, G.; Van Schooten, K.S.; Pijnappels, M.; Kröse, B. Deep Learning to Predict Falls in Older Adults Based on Daily-Life Trunk Accelerometry. Sensors 2018, 18, 1654. [Google Scholar] [CrossRef] [Green Version]
- Shojaei-Hashemi, A.; Nasiopoulos, P.; Little, J.J.; Pourazad, M.T. Video-Based Human Fall Detection in Smart Homes Using Deep Learning. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar]
- Pereira, C.R.; Pereira, D.R.; Papa, J.P.; Rosa, G.H.; Yang, X.-S. Convolutional Neural Networks Applied for Parkinson’s Disease Identification. In Machine Learning for Health Informatics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 377–390. [Google Scholar]
- Latif, S.; Usman, M.; Rana, R.; Qadir, J. Phonocardiographic Sensing Using Deep Learning for Abnormal Heartbeat Detection. IEEE Sens. J. 2018, 18, 9393–9400. [Google Scholar] [CrossRef] [Green Version]
- Jo, B.W.; Khan, R.M.A.; Lee, Y.-S. Hybrid Blockchain and Internet-of-Things Network for Underground Structure Health Monitoring. Sensors 2018, 18, 4268. [Google Scholar] [CrossRef] [Green Version]
- Abdelmaboud, A.; Ahmed, A.I.A.; Abaker, M.; Eisa, T.A.E.; Albasheer, H.; Ghorashi, S.A.; Karim, F.K. Blockchain for IoT Applications: Taxonomy, Platforms, Recent Advances, Challenges and Future Research Directions. Electronics 2022, 11, 630. [Google Scholar] [CrossRef]
- Uddin, M.A.; Stranieri, A.; Gondal, I.; Balasubramanian, V. A Decentralized Patient Agent Controlled Blockchain for Remote Patient Monitoring. In Proceedings of the 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, 21–23 October 2019; pp. 1–8. [Google Scholar]
- Manogaran, G.; Thota, C.; Lopez, D.; Sundarasekar, R. Big Data Security Intelligence for Healthcare Industry 4.0. In Cybersecurity for Industry 4.0: Analysis for Design and Manufacturing; Thames, L., Schaefer, D., Eds.; Springer Series in Advanced Manufacturing; Springer International Publishing: Cham, Switzerland, 2017; pp. 103–126. ISBN 978-3-319-50660-9. [Google Scholar]
- Rajabion, L.; Shaltooki, A.A.; Taghikhah, M.; Ghasemi, A.; Badfar, A. Healthcare Big Data Processing Mechanisms: The Role of Cloud Computing. Int. J. Inf. Manag. 2019, 49, 271–289. [Google Scholar] [CrossRef]
- Pramanik, P.K.D.; Pal, S.; Mukhopadhyay, M. Healthcare big data: A comprehensive overview. Res. Anthol. Big Data Anal.Archit. Appl. 2022, 119–147. [Google Scholar] [CrossRef]
- Persico, V.; Montieri, A.; Pescape, A. On the Network Performance of Amazon S3 Cloud-Storage Service. In Proceedings of the 2016 5th IEEE International Conference on Cloud Networking (Cloudnet), Pisa, Italy, 3–5 October 2016; pp. 113–118. [Google Scholar]
- Persico, V.; Botta, A.; Marchetta, P.; Montieri, A.; Pescape, A. On the Performance of the Wide-Area Networks Interconnecting Public-Cloud Datacenters around the Globe. Comput. Netw. 2017, 112, 67–83. [Google Scholar] [CrossRef]
- Kalyani, Y.; Collier, R. A Systematic Survey on the Role of Cloud, Fog, and Edge Computing Combination in Smart Agriculture. Sensors 2021, 21, 5922. [Google Scholar] [CrossRef]
- “Fog Computing Challenges: A Systematic Review” by Avirup Dasgupta and Asif Gill. Available online: https://aisel.aisnet.org/acis2017/79/ (accessed on 24 August 2021).
- Bhatia, T.; Verma, A.K. Data Security in Mobile Cloud Computing Paradigm: A Survey, Taxonomy and Open Research Issues. J. Supercomput. 2017, 73, 2558–2631. [Google Scholar] [CrossRef]
- Alharthi, A.; Krotov, V.; Bowman, M. Addressing Barriers to Big Data. Bus. Horiz. 2017, 60, 285–292. [Google Scholar] [CrossRef]
- Sánchez-Guerrero, R.; Mendoza, F.A.; Diaz-Sanchez, D.; Cabarcos, P.A.; López, A.M. Collaborative Ehealth Meets Security: Privacy-Enhancing Patient Profile Management. IEEE J. Biomed. Health Inform. 2017, 21, 1741–1749. [Google Scholar] [CrossRef]
- Skourletopoulos, G.; Mavromoustakis, C.X.; Mastorakis, G.; Batalla, J.M.; Dobre, C.; Panagiotakis, S.; Pallis, E. Big Data and Cloud Computing: A Survey of the State-of-the-Art and Research Challenges. In Advances in Mobile Cloud Computing and Big Data in the 5G Era; Mavromoustakis, C.X., Mastorakis, G., Dobre, C., Eds.; Studies in Big Data; Springer International Publishing: Cham, Switzerland, 2017; pp. 23–41. ISBN 978-3-319-45145-9. [Google Scholar]
- Elbasani, E.; Siriporn, P.; Choi, J.S. A Survey on RFID in Industry 4.0. In Internet of Things for Industry 4.0: Design, Challenges and Solutions; Kanagachidambaresan, G.R., Anand, R., Balasubramanian, E., Mahima, V., Eds.; EAI/Springer Innovations in Communication and Computing; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–16. ISBN 978-3-030-32530-5. [Google Scholar]
- Li, X.; Li, D.; Wan, J.; Vasilakos, A.V.; Lai, C.-F.; Wang, S. A Review of Industrial Wireless Networks in the Context of Industry 4.0. Wirel. Netw. 2017, 23, 23–41. [Google Scholar] [CrossRef]
- Mohanty, S.N.; Ramya, K.C.; Rani, S.S.; Gupta, D.; Shankar, K.; Lakshmanaprabu, S.K.; Khanna, A. An Efficient Lightweight Integrated Blockchain (ELIB) Model for IoT Security and Privacy. Future Gener. Comput. Syst. 2020, 102, 1027–1037. [Google Scholar] [CrossRef]
- Xie, J.; Yu, F.R.; Huang, T.; Xie, R.; Liu, J.; Liu, Y. A Survey on the Scalability of Blockchain Systems. IEEE Netw. 2019, 33, 166–173. [Google Scholar] [CrossRef]
- Viriyasitavat, W.; Anuphaptrirong, T.; Hoonsopon, D. When Blockchain Meets Internet of Things: Characteristics, Challenges, and Business Opportunities. J. Ind. Inf. Integr. 2019, 15, 21–28. [Google Scholar] [CrossRef]
- Konstantinidis, I.; Siaminos, G.; Timplalexis, C.; Zervas, P.; Peristeras, V.; Decker, S. Blockchain for Business Applications: A Systematic Literature Review. In Proceedings of the Business Information Systems; Abramowicz, W., Paschke, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 384–399. [Google Scholar]
S.No | Study | Publication Year | BC | Ml & AI | IoT | Remote Patient Monitoring | Access Management | Healthcare Challenges & Related Solutions | Solutions for Secure and Intelligent IoHT |
---|---|---|---|---|---|---|---|---|---|
1 | Shailaja et al. [46] | 2018 | No | Yes | No | No | No | No | No |
2 | Panarello et al. [47] | 2018 | Yes | Yes | Yes | No | No | Yes | No |
3 | Faust et al. [48] | 2018 | No | Yes | Yes | No | No | No | No |
4 | Kuo et al. [49] | 2019 | Yes | No | No | No | No | No | No |
5 | Ahmadi et al. [50] | 2019 | No | No | Yes | Yes | No | No | No |
6 | Aggarwal et al. [51] | 2019 | Yes | No | Yes | Yes | Yes | Yes | No |
7 | Andoni et al. [52] | 2019 | Yes | Yes | No | No | No | No | No |
8 | Naser et al. [53] | 2019 | Yes | No | Yes | No | Yes | Yes | No |
9 | Wang et al. [54] | 2019 | No | Yes | Yes | No | No | Yes | No |
10 | Qadri et al. [55] | 2020 | Yes | Yes | Yes | No | Partial | Yes | No |
11 | Qayyum et al. [56] | 2020 | No | Yes | No | Yes | No | No | No |
12 | Karthick et al. [57] | 2020 | No | No | Yes | Yes | No | Yes | Yes |
13 | Hosseinzadeh et al. [58] | 2021 | No | Yes | Yes | Yes | No | No | No |
14 | Uddin et al. [34] | 2021 | Yes | Yes | Yes | Yes | Yes | No | No |
15 | Yaqoob et al. [59] | 2021 | Yes | No | Yes | Yes | Yes | Partial | No |
16 | Mostafa et al. [60] | 2021 | No | yes | yes | Yes | No | No | Yes |
16 | Proposed survey | 2022 | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
S.No | Architecture | Description |
---|---|---|
1 | SAM [68] | Proprietary DIY IoT platform with offline access and cloud support |
2 | IEEE Project P2413 [69] | Allows compatibility among heterogeneous frameworks |
3 | IoT-A [70] | Architecture Reference Model (ARM) for the inter-working of IoT platforms |
4 | iCore [71] | An IoT platform handling the heterogeneity and facilitating user-level management |
5 | TRESCIMO [72] | Smart City M2M Connections Test-beds |
6 | Glue.thing [73] | Proprietary DIY based IoT platform |
7 | FIWARE [74] | Software development in IoT using APIs |
8 | Node-red [75] | Web-based flow editor, open source IoT platform |
9 | Dweet.IO [76] | Open source middle-ware simply shares data using web-based RESTful API based on the IoT platform |
10 | Particle.IO [77] | Exclusive middle-ware based fully-integrated IoT platform |
11 | COMPOSE [78] | An Open Market in a collaborative fashion to allocate things at your service |
12 | IoTDM [79] | Middle-ware that act as M2M’s information broker |
13 | OneM2M [80] | Handle the vertical heterogeneity, vertical applications connectivity |
S.No | BC Types | Description |
---|---|---|
1 | Public BC | The transaction is open to the public for verification Open source public can read code |
2 | Private BC | Only trusted parties can participate, validate and verify a transaction |
3 | Consortium BC | Semi-private, which users of different organizations control |
4 | Enterprise Ethereum BC | Second largest open source enterprise BC Use for general purpose Facilitates smart contracts and distributed apps dApps |
5 | Enterprise Hyperledger Fabric | Open-source Permissioned distributed ledger developed by the Linux Foundation-hosted Hyperledger consortium To interact with Hyperledger Fabric Network, clients use SKD or REST API |
6 | Public Permissioned BC | Bridges the gap between the public permission-less network Examples are C3’s Corda, Fabric Hyperledger |
7 | Private Permissioned BC | Permissioned BC Only selected participants can join the BC |
8 | Customized BC Customized Public/Private BC | Developers uses programming language such as Go language, C++, java, python, etc. to analyze their application performance |
9 | Enterprise Permission BC | Enterprise-level BC such as Hyperledger Fabric Permission needed for participation |
10 | Cloud BC | BC operated by third-party clouds such as AWS |
Application | Contributions | Year—References |
---|---|---|
BC for Healthcare | “GuardHealth” framework based on consortium BC for secure data sharing | 2020—Wang et al. [212] |
MeDShare for effective data sharing among medical caregivers | 2017—Xia et al. [209] | |
Patients direct clinical examination by using IoT-enabled medical devices | 2020—Celesti et al. [213] | |
Using BC technology simplifies patient-centric interoperability in healthcare | 2018—Gordon et al. [210] | |
The framework used to implement BC in EHRs | 2019—Shahnaz et al. [214] | |
Consortium BC is used to connect patients and health centers and enable healthcare audibility, share data, and review medical records | 2018—Wang et al. [211] | |
Patient pivotal healthcare system for data management | 2019—Omar et al. [211] | |
By utilizing Smart contracts and BC to maintain PHI | 2018—Griggs et al. [215] |
Pillars | Challenges | Solutions/Benefits |
---|---|---|
IoT | Scalability [149,151,224] Energy constraints [20] Security [224,225,226] | Interoperability, evolvability thanks to open communication standards [151] Enhanced electromedical devices based on closed-loop design and predictive maintenance [19] |
Big Data | The opacity of analytics [227,228] Extreme heterogeneity [229] | New insights and actionable information from new data sources [230] Natural transformation of descriptive research into predictive and prescriptive one [231] |
Cloud/Fog Computing | Infrastructure availability [45] Performance monitoring Data privacy [45] The opacity of the infrastructure | Paradigmatic model for an offering of services to patients or healthcare operators themselves Infrastructure for high-level functions such as data analysis and information systems [232] |
Scenario/Use Cases | IoT Based Application | Input Datasets | DL Models | Infrastructures |
---|---|---|---|---|
Smart Healthcare | Dietary assessment | UEC-100/UEC-256/Food-101 datasets [286] | CNN | |
UEC-256/UEC-100 datasets [285] | CNN | Edge computing | ||
Elderly care | SisFall dataset [279] | RNN | Cloud computing | |
Sports-1M/Cameras fall/FDD/URFD datasets [287] | 3D CNN + LSTM | Cloud computing | ||
Authors create their data [275] | DBN + RBM | Cloud computing | ||
[288] | CNN + LSTM | Cloud computing | ||
URFD dataset [276] | CNN | Cloud computing | ||
NTU RGB-D dataset [289] | LSTM | Cloud computing | ||
URFD dataset [277] | CNN | Fog computing | ||
Smartwatch, Notch, and Farseeing datasets [280] | RNN | Edge computing | ||
Coco dataset [278] | CNN | Cloud computing | ||
Disease prediction | HandPD dataset [290] | CNN | Cloud computing | |
PhysioNet/Cardiology Challenge dataset [291] | RNN | Cloud computing | ||
ImageNet dataset [281] | CNN | Cloud computing | ||
Authors use 840 digital mammograms images collected from medical systems [283] | CNN | Cloud computing |
Challenges | Solutions |
---|---|
Handling Big Data | The off-chain technique is used to overcome big data issues in an IoT system by many researchers using it in an IoT system by integrating BC storage with cloud storage. |
Data Concurrency and Throughput Challenge | This issue is resolved by using the sharding technique by a researcher in which the peer-to-peer network of BC is divided into different groups. Members of that sharding handle the transactions because authentication and processing of transactions are generated here in the sharding. |
Connectivity Challenges | Multi-access edge computing (MEC) is used in literature to host a side-chain for solving connectivity issues. The side-chain is used to connect IoT devices with the main chain. |
Trust | BlockBDM is a technique used to handle IoT big data management trust and security issues. |
Privacy | The privacy issues can be solved by using Ring signature BC, which is encrypted technology commonly used. |
Single Point of Failure | The peer-to-peer architecture of BC technology can solve a single point of failure issue in IoT. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaman, U.; Imran; Mehmood, F.; Iqbal, N.; Kim, J.; Ibrahim, M. Towards Secure and Intelligent Internet of Health Things: A Survey of Enabling Technologies and Applications. Electronics 2022, 11, 1893. https://doi.org/10.3390/electronics11121893
Zaman U, Imran, Mehmood F, Iqbal N, Kim J, Ibrahim M. Towards Secure and Intelligent Internet of Health Things: A Survey of Enabling Technologies and Applications. Electronics. 2022; 11(12):1893. https://doi.org/10.3390/electronics11121893
Chicago/Turabian StyleZaman, Umar, Imran, Faisal Mehmood, Naeem Iqbal, Jungsuk Kim, and Muhammad Ibrahim. 2022. "Towards Secure and Intelligent Internet of Health Things: A Survey of Enabling Technologies and Applications" Electronics 11, no. 12: 1893. https://doi.org/10.3390/electronics11121893
APA StyleZaman, U., Imran, Mehmood, F., Iqbal, N., Kim, J., & Ibrahim, M. (2022). Towards Secure and Intelligent Internet of Health Things: A Survey of Enabling Technologies and Applications. Electronics, 11(12), 1893. https://doi.org/10.3390/electronics11121893