Performance Assessment of Mismatch Mitigation Methodologies Using Field Data in Solar Photovoltaic Systems
Abstract
:1. Introduction
2. Mismatch Mitigation Methodologies
2.1. Bypass Diode Methodology
2.2. DC Power Optimizers
2.3. Differential Power Processing (DPP) Converter
3. Introduction of the PV System and SolarTechLab Test Facility
4. Evaluation Procedure and Mismatch Scenarios
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sivaram, V.; Kann, S. Solar Power Needs a More Ambitious Cost Target. Nat. Energy 2016, 1, 16036. [Google Scholar] [CrossRef]
- Nemet, G.F. Beyond the Learning Curve: Factors Influencing Cost Reductions in Photovoltaics. Energy Policy 2006, 34, 3218–3232. [Google Scholar] [CrossRef]
- GSR2022_Full_Report.Pdf. Available online: https://www.ren21.net/wp-content/uploads/2019/05/GSR2022_Full_Report.pdf (accessed on 1 May 2022).
- Obeidat, F. A Comprehensive Review of Future Photovoltaic Systems. Sol. Energy 2018, 163, 545–551. [Google Scholar] [CrossRef]
- Mäki, A.; Valkealahti, S. Power Losses in Long String and Parallel-Connected Short Strings of Series-Connected Silicon-Based Photovoltaic Modules Due to Partial Shading Conditions. IEEE Trans. Energy Convers. 2012, 27, 173–183. [Google Scholar] [CrossRef]
- Potnuru, S.R.; Pattabiraman, D.; Ganesan, S.I.; Chilakapati, N. Positioning of PV Panels for Reduction in Line Losses and Mismatch Losses in PV Array. Renew. Energy 2015, 78, 264–275. [Google Scholar] [CrossRef]
- Manganiello, P.; Balato, M.; Vitelli, M. A Survey on Mismatching and Aging of PV Modules: The Closed Loop. IEEE Trans. Ind. Electron. 2015, 62, 7276–7286. [Google Scholar] [CrossRef]
- Vumbugwa, M.; Vorster, F.J.; Crozier McCleland, J.L.; van Dyk, E.E. Effects of Changing Partial Cell Shading on the Electrical and Thermal Characteristics of Crystalline Silicon Photovoltaic Module. Sol. Energy 2022, 240, 147–156. [Google Scholar] [CrossRef]
- Sattar, A.; Farooq, M.; Amjad, M.; Saeed, M.A.; Nawaz, S.; Mujtaba, M.A.; Anwar, S.; El-Sherbeeny, A.M.; Soudagar, M.E.M.; Bandarra Filho, E.P.; et al. Performance Evaluation of a Direct Absorption Collector for Solar Thermal Energy Conversion. Energies 2020, 13, 4956. [Google Scholar] [CrossRef]
- Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A.A.; Kim, K.-H. Solar Energy: Potential and Future Prospects. Renew. Sustain. Energy Rev. 2018, 82, 894–900. [Google Scholar] [CrossRef]
- Villalva, M.G.; Gazoli, J.R.; Filho, E.R. Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Trans. Power Electron. 2009, 24, 1198–1208. [Google Scholar] [CrossRef]
- Kaushika, N.D.; Rai, A.K. An Investigation of Mismatch Losses in Solar Photovoltaic Cell Networks. Energy 2007, 32, 755–759. [Google Scholar] [CrossRef]
- Deline, C. Partially Shaded Operation of Multi-String Photovoltaic Systems. In Proceedings of the 2010 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, USA, 20–25 June 2010; pp. 000394–000399. [Google Scholar]
- Piccoli, E.; Dama, A.; Dolara, A.; Leva, S. Experimental Validation of a Model for PV Systems under Partial Shading for Building Integrated Applications. Sol. Energy 2019, 183, 356–370. [Google Scholar] [CrossRef]
- Kim, K.A.; Krein, P.T. Hot Spotting and Second Breakdown Effects on Reverse I-V Characteristics for Mono-Crystalline Si Photovoltaics. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 1007–1014. [Google Scholar]
- Rossi, D.; Omaña, M.; Giaffreda, D.; Metra, C. Modeling and Detection of Hotspot in Shaded Photovoltaic Cells. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2015, 23, 1031–1039. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, S.; Niazi, K.A.K.; Khan, H.A.; Yang, Y. Hotspots and Performance Evaluation of Crystalline-Silicon and Thin-Film Photovoltaic Modules. Microelectron. Reliab. 2018, 88–90, 1014–1018. [Google Scholar] [CrossRef]
- Silvestre, S.; Boronat, A.; Chouder, A. Study of Bypass Diodes Configuration on PV Modules. Appl. Energy 2009, 86, 1632–1640. [Google Scholar] [CrossRef]
- Ramli, M.Z.; Salam, Z. Performance Evaluation of Dc Power Optimizer (DCPO) for Photovoltaic (PV) System during Partial Shading. Renew. Energy 2019, 139, 1336–1354. [Google Scholar] [CrossRef]
- Chu, G.; Wen, H. A Reliability Assessment of Submodule-Level Distributed Power Electronic Solution in Photovoltaic Generation System. In Proceedings of the 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), Nanjing, China, 29 November–2 December 2020; pp. 1740–1745. [Google Scholar]
- Shenoy, P.S.; Kim, K.A.; Johnson, B.B.; Krein, P.T. Differential Power Processing for Increased Energy Production and Reliability of Photovoltaic Systems. IEEE Trans. Power Electron. 2013, 28, 2968–2979. [Google Scholar] [CrossRef]
- Pascual, C.; Krein, P.T. Switched Capacitor System for Automatic Series Battery Equalization. In Proceedings of the Proceedings of APEC 97—Applied Power Electronics Conference, Atlanta, GA, USA, 27 February 1997; Volume 2, pp. 848–854. [Google Scholar]
- Niazi, K.A.K.; Yang, Y.; Sera, D. Review of Mismatch Mitigation Techniques for PV Modules. IET Renew. Power Gener. 2019, 13, 2035–2050. [Google Scholar] [CrossRef]
- Khan Niazi, K.A.; Yang, Y.; He, J.; Khan, A.Z.; Sera, D. Switched-Capacitor-Inductor-Based Differential Power Converter for Solar PV Modules. In Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October; pp. 4613–4618.
- Niazi, K.A.K.; Yang, Y.; Kerekes, T.; Sera, D. A Simple Mismatch Mitigating Partial Power Processing Converter for Solar PV Modules. Energies 2021, 14, 2308. [Google Scholar] [CrossRef]
- Niazi, K.A.K.; Yang, Y.; Spataru, S.V.; Mutarraf, M.U.; Sera, D. Experimental benchmarking of partial shading effect on thin-film and crystalline-silicon solar photovoltaic modules. In Proceedings of the 36th European Photovoltaic Solar Energy Conference and Exhibition, Marseille, France, 9–13 September 2019. [Google Scholar]
- Pannebakker, B.B.; de Waal, A.C.; van Sark, W.G.J.H.M. Photovoltaics in the Shade: One Bypass Diode per Solar Cell Revisited. Prog. Photovolt. Res. Appl. 2017, 25, 836–849. [Google Scholar] [CrossRef] [Green Version]
- Etarhouni, M.; Chong, B.; Zhang, L. A Combined Scheme for Maximising the Output Power of a Photovoltaic Array under Partial Shading Conditions. Sustain. Energy Technol. Assess. 2022, 50, 101878. [Google Scholar] [CrossRef]
- Femia, N.; Lisi, G.; Petrone, G.; Spagnuolo, G.; Vitelli, M. Distributed Maximum Power Point Tracking of Photovoltaic Arrays: Novel Approach and System Analysis. IEEE Trans. Ind. Electron. 2008, 55, 2610–2621. [Google Scholar] [CrossRef] [Green Version]
- Khan, O.; Xiao, W. Review and Qualitative Analysis of Submodule-Level Distributed Power Electronic Solutions in PV Power Systems. Renew. Sustain. Energy Rev. 2017, 76, 516–528. [Google Scholar] [CrossRef]
- Salam, Z.; Ramli, M.Z. Distributed Maximum Power Point Tracker for Additional Energy Harvesting during Partial Shading of PV System. In Proceedings of the 2015 First Workshop on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, 22–23 March 2015; pp. 1–5. [Google Scholar]
- Li, C.; Yang, Y.; Fan, F.; Xia, L.; Peng, P.; Wang, Y.; Zhang, K.; Wei, H. A Novel Methodology for Partial Shading Diagnosis Using t Electrical Parameters of Photovoltaic Strings. IEEE J. Photovolt. 2022, 1–9. [Google Scholar] [CrossRef]
- Deline, C.; MacAlpine, S. Use Conditions and Efficiency Measurements of DC Power Optimizers for Photovoltaic Systems. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 4801–4807. [Google Scholar]
- De Souza Silva, J.L.; Soeiro Moreira, H.; Bastos de Mesquita, D.; Gomes dos Reis, M.V.; Gradella Villalva, M. Study of Power Optimizers for Grid-Connected Photovoltaic Systems. IEEE Lat. Am. Trans. 2019, 17, 127–134. [Google Scholar] [CrossRef]
- Sinapis, K.; Tsatsakis, K.; Dörenkämper, M.; van Sark, W.G.J.H.M. Evaluation and Analysis of Selective Deployment of Power Optimizers for Residential PV Systems. Energies 2021, 14, 811. [Google Scholar] [CrossRef]
- Friesen, G.; Ossenbrink, H.A. Capacitance Effects in High-Efficiency Cells. Sol. Energy Mater. Sol. Cells 1997, 48, 77–83. [Google Scholar] [CrossRef]
- Peter, P.K.; Agarwal, V. Current Equalization in Photovoltaic Strings With Module Integrated Ground-Isolated Switched Capacitor DC–DC Converters. IEEE J. Photovolt. 2014, 4, 669–678. [Google Scholar] [CrossRef]
- Uno, M.; Kukita, A. Single-Switch Voltage Equalizer Using Multistacked Buck–Boost Converters for Partially Shaded Photovoltaic Modules. IEEE Trans. Power Electron. 2015, 30, 3091–3105. [Google Scholar] [CrossRef]
- Flores-Bahamonde, F.; Rojas, J.; Kouro, S.; Llor, A.M.; Rojas, C.A.; Perez, M.A. Sub-Modular Power Optimizers Based on Partial Power Converters for Utility Scale PV Plants. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisabon, Portugal, 14–17 October 2019; Volume 1, pp. 4423–4428. [Google Scholar]
- Niazi, K.A.K.; Yang, Y.; Kerekes, T.; Sera, D. Reconfigurable Distributed Power Electronics Technique for Solar PV Systems. Electronics 2021, 10, 1121. [Google Scholar] [CrossRef]
- Jeong, H.; Lee, H.; Liu, Y.; Kim, K.A. Review of Differential Power Processing Converter Techniques for Photovoltaic Applications. IEEE Trans. Energy Convers. 2019, 34, 351–360. [Google Scholar] [CrossRef]
- Khan Niazi, K.A.; Yang, Y.; Khan, H.A.; Sera, D. Performance Benchmark of Bypassing Techniques for Photovoltaic Modules. In Proceedings of the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 17–19 March 2019; pp. 3164–3168. [Google Scholar]
- Belhachat, F.; Larbes, C. A Review of Global Maximum Power Point Tracking Techniques of Photovoltaic System under Partial Shading Conditions. Renew. Sustain. Energy Rev. 2018, 92, 513–553. [Google Scholar] [CrossRef]
- Nasir, M.; Zia, M.F. Global Maximum Power Point Tracking Algorithm for Photovoltaic Systems under Partial Shading Conditions. In Proceedings of the 2014 16th International Power Electronics and Motion Control Conference and Exposition, Antalya, Türkiye, 21–24 September 2014; pp. 667–672. [Google Scholar]
- Liu, Y.-H.; Liu, C.-L.; Huang, J.-W.; Chen, J.-H. Neural-Network-Based Maximum Power Point Tracking Methods for Photovoltaic Systems Operating under Fast Changing Environments. Sol. Energy 2013, 89, 42–53. [Google Scholar] [CrossRef]
- Dolara, A.; Grimaccia, F.; Mussetta, M.; Ogliari, E.; Leva, S. An Evolutionary-Based MPPT Algorithm for Photovoltaic Systems under Dynamic Partial Shading. Appl. Sci. 2018, 8, 558. [Google Scholar] [CrossRef] [Green Version]
- Hayder, W.; Ogliari, E.; Dolara, A.; Abid, A.; Ben Hamed, M.; Sbita, L. Improved PSO: A Comparative Study in MPPT Algorithm for PV System Control under Partial Shading Conditions. Energies 2020, 13, 2035. [Google Scholar] [CrossRef]
- Aghaei, M.; Dolara, A.; Grimaccia, F.; Leva, S.; Kania, D.; Borkowski, J. Experimental Comparison of MPPT Methods for PV Systems under Dynamic Partial Shading Conditions. In Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016; pp. 1–6. [Google Scholar]
- Dolara, A.; Leva, S.; Magistrati, G.; Mussetta, M.; Ogliari, E.; Arvind, R.V. A Novel MPPT Algorithm for Photovoltie Systems under Dynamic Partial Shading—Recurrent Scan and Track Method. In Proceedings of the 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Birmingham, UK, 20–23 November 2016; pp. 1122–1127. [Google Scholar]
- Sera, D.; Mathe, L.; Blaabjerg, F. Distributed Control of PV Strings with Module Integrated Converters in Presence of a Central MPPT. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 1–8. [Google Scholar]
- Al-Smadi, M.K.; Mahmoud, Y. Photovoltaic Module Cascaded Converters for Distributed Maximum Power Point Tracking: A Review. IET Renew. Power Gener. 2020, 14, 2551–2562. [Google Scholar] [CrossRef]
- Niazi, K.A.K.; Yang, Y.; Sera, D. Intrinsic-Capacitance-Based Differential Power Processing for Photovoltaic Modules. In Proceedings of the 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), Aalborg, Denmark, 9–12 November 2020; pp. 1–6. [Google Scholar]
- Chang, A.H.; Avestruz, A.; Leeb, S.B. Capacitor-Less Photovoltaic Cell-Level Power Balancing Using Diffusion Charge Redistribution. IEEE Trans. Power Electron. 2015, 30, 537–546. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, Y.; Lehman, B. PV Panel to PV Panel Transfer Method for Modular Differential Power Processing. IEEE Trans. Power Electron. 2022, 37, 4764–4778. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, Y.; Li, D.; Lehman, B. Distributed MPPT for Modular Differential Power Processing in Scalable Photovoltaic System. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), Antonio, TX, USA, 4–8 March 2018; pp. 1098–1103. [Google Scholar]
- Uno, M.; Sato, H.; Ishikawa, T. Differential Power Processing Converter Enhancing Energy Yield of Curved Solar Roofs of Plug-in Hybrid Electric Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 14689–14700. [Google Scholar] [CrossRef]
- Stauth, J.T.; Seeman, M.D.; Kesarwani, K. A Resonant Switched-Capacitor IC and Embedded System for Sub-Module Photovoltaic Power Management. IEEE J. Solid-State Circuits 2012, 47, 3043–3054. [Google Scholar] [CrossRef]
- Ramli, M.Z.; Salam, Z. A Simple Energy Recovery Scheme to Harvest the Energy from Shaded Photovoltaic Modules During Partial Shading. IEEE Trans. Power Electron. 2014, 29, 6458–6471. [Google Scholar] [CrossRef]
- Shenoy, P.S.; Krein, P.T. Differential Power Processing for DC Systems. IEEE Trans. Power Electron. 2013, 28, 1795–1806. [Google Scholar] [CrossRef]
- Gokdag, M.; Akbaba, M.; Gulbudak, O. Switched-Capacitor Converter for PV Modules under Partial Shading and Mismatch Conditions. Sol. Energy 2018, 170, 723–731. [Google Scholar] [CrossRef]
- SolarTech Lab. Available online: http://www.solartech.polimi.it/ (accessed on 28 May 2022).
- Leva, S.; Nespoli, A.; Pretto, S.; Mussetta, M.; Ogliari, E.G.C. PV Plant Power Nowcasting: A Real Case Comparative Study With an Open Access Dataset. IEEE Access 2020, 8, 194428–194440. [Google Scholar] [CrossRef]
- Dolara, A.; Leva, S.; Manzolini, G. Comparison of Different Physical Models for PV Power Output Prediction. Sol. Energy 2015, 119, 83–99. [Google Scholar] [CrossRef] [Green Version]
Pyra #1 | Pyra #2 | Pyra #3 | |
---|---|---|---|
ISO9060 classification | Secondary standard | First Class | |
Achievable accuracy (95% confidential level) | ±2% | ±5% | |
Non linearity % (1000 W/m2) | <±0.2% | <±1% | |
Tilt | 30° | 0° | 0° |
Azimuth | −6°30′ | - | - |
Measurement | Plane-Of-Array (POA) | Global Horizontal Irradiance (GHI) | Diffuse Horizontal Irradiance (DHI) |
Parameter | Value |
---|---|
Maximum Power Rating (Pmax) | 245 W |
Voltage at maximum power (Vmp) | 31.30 V |
Current at maximum power (Imp) | 7.84 A |
Open-Circuit Voltage (Voc) | 37.10 V |
Short-Circuit Current (Isc) | 8.48 A |
Mismatch Cases | VT1 | VT2 | VT3 | Vnscells | Vscell |
---|---|---|---|---|---|
5 | −0.7 | 10.56 | 10.56 | 12.95 | −13.62 |
9 | −0.7 | −0.7 | 10.57 | 12.36 | −13.06 |
10 | 0.012 | 0.012 | 0.012 | 12.36 | −12.51 |
11 | 11.24 | 11.24 | 11.24 | 10.67 | 0.60 |
12 | 11.89 | 11.82 | 11.82 | 11.27 | 0.62 |
Mismatch Cases | VT1 | VT2 | VT3 | Vnscells | Vscell |
---|---|---|---|---|---|
5 | −0.0017 | 10.42 | 10.42 | 12.92 | −12.92 |
9 | −0.12 | −0.12 | 11.00 | 12.36 | −12.48 |
10 | 0.0033 | 0.0033 | 0.0033 | 12.36 | −12.33 |
11 | 11.33 | 11.33 | 11.33 | 10.68 | 0.65 |
12 | 11.97 | 11.97 | 11.97 | 11.27 | 0.69 |
Mismatch Cases | VT1 | VT2 | VT3 | Vnscells | Vscell |
---|---|---|---|---|---|
5 | 8.44 | 10.01 | 10.13 | 12.92 | −4.48 |
9 | 8.69 | 8.74 | 10.38 | 12.38 | −3.68 |
10 | 0.035 | 0.035 | 0.035 | 12.36 | −12.32 |
11 | 11.23 | 11.23 | 11.23 | 10.66 | 0.57 |
12 | 11.96 | 11.96 | 11.96 | 11.26 | 0.69 |
Ref. | Topologies | Electrical Components | Complexity | Cost | Operating Strategy | Local Maxima’s | Efficiency | |
---|---|---|---|---|---|---|---|---|
No Mismatch | Mismatch | |||||||
[16] | Bypass diode | 3x | Low | Low | None | Yes | High | Low |
[17] | DC Power optimizer | 12x | High | High | Complex | No | Low | Medium |
[46] | Switched-Capacitor-converters | 8x | Medium | Medium | None/Complex | No | Medium | High |
Methodologies | Diodes | Capacitors | Inductors | MOSFETs | Total Electrical Components |
---|---|---|---|---|---|
Bypass diode | 27 | 0 | 0 | 0 | 27 |
Dc optimizer | 27 | 27 | 27 | 27 | 108 |
DPP converter | 0 | 18 | 0 | 54 | 72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niazi, K.A.K.; Kerekes, T.; Dolara, A.; Yang, Y.; Leva, S. Performance Assessment of Mismatch Mitigation Methodologies Using Field Data in Solar Photovoltaic Systems. Electronics 2022, 11, 1938. https://doi.org/10.3390/electronics11131938
Niazi KAK, Kerekes T, Dolara A, Yang Y, Leva S. Performance Assessment of Mismatch Mitigation Methodologies Using Field Data in Solar Photovoltaic Systems. Electronics. 2022; 11(13):1938. https://doi.org/10.3390/electronics11131938
Chicago/Turabian StyleNiazi, Kamran Ali Khan, Tamas Kerekes, Alberto Dolara, Yongheng Yang, and Sonia Leva. 2022. "Performance Assessment of Mismatch Mitigation Methodologies Using Field Data in Solar Photovoltaic Systems" Electronics 11, no. 13: 1938. https://doi.org/10.3390/electronics11131938
APA StyleNiazi, K. A. K., Kerekes, T., Dolara, A., Yang, Y., & Leva, S. (2022). Performance Assessment of Mismatch Mitigation Methodologies Using Field Data in Solar Photovoltaic Systems. Electronics, 11(13), 1938. https://doi.org/10.3390/electronics11131938