Post-Flood UAV-Based Free Space Optics Recovery Communications with Spatial Mode Diversity
Abstract
:1. Introduction
2. Free Space Optics for Post-Flood Recovery Communications
3. Contributions
4. Methods
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef]
- Veettil, P.C.; Raghu, P.T.; Ashok, A. Information quality, adoption of climate-smart varieties and their economic impact in flood-risk areas. Environ. Dev. Econ. 2020, 26, 45–68. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Su, B.; Wang, Y.; Wang, G.; Wang, G.; Huang, J.; Jiang, T. Flood risk in a range of spatial perspectives—From global to local scales. Nat. Hazards Earth Syst. Sci. 2019, 19, 1319–1328. [Google Scholar] [CrossRef] [Green Version]
- Baharuddin, K.A.; Wahab, S.F.A.; Ab Rahman, N.H.N.; Mohamad, N.A.N.; Kamauzaman, T.H.T.; Noh, A.Y.M.; Majod, M.R.A. The record-setting flood of 2014 in Kelantan: Challenges and recommendations from an emergency medicine perspective and why the medical campus stood dry. Malays. J. Med. Sci. 2015, 22, 1–7. [Google Scholar]
- Reuters. Malaysia Floods Hit Seven States Forcing Thousands to Evacuate. 2022. Available online: https://edition.cnn.com/2022/01/02/asia/malaysia-floods-evacuation-intl-hnk/index.html (accessed on 23 April 2022).
- Hassan, H. Peninsular Malaysia hit by ‘1-in-100-year’ rainfall, government says amid severe flooding. The Straits Time, 20 December 2021. [Google Scholar]
- Malaysia National Disaster Management Agency (NADMA). Malaysia-Floods and Landslides, Update. In European Union Civil Protection and Humanitarian Aid (ECHO) Daily Flash, European Civil Protection and Humanitarian Aid. 3 January 2022. Available online: https://reliefweb.int/report/malaysia/malaysia-floods-and-landslides-update-nadma-met-malaysia-media-echo-daily-flash-3 (accessed on 23 April 2022).
- Chen, G. Floods: 472 areas in Petaling, KL and Hulu Langat hit by water cuts as treatment plants shut down. The Star, 19 December 2021. [Google Scholar]
- TNB shuts down 333 power substations in six states hit by floods. Malay Mail, 19 December 2021.
- Over 100 Celcom 2G/4G Network Sites impacted by Flood, Restoration in Progress. Malaysian Wireless, 23 December 2021.
- MCMC: 276 Communication Tower Still Down, PJ Among Highest. Business Today, 25 December 2021.
- Hu, J.; Huang, H.; Yang, L.; Zhu, Y. A multi-objective optimization framework of constellation design for emergency observation. Adv. Space Res. 2020, 67, 531–545. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Bai, S.; Yue, Y. Design of agile satellite constellation based on hybrid-resampling particle swarm optimization method. Acta Astronaut. 2021, 178, 595–605. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, Z.; Dai, Y.; Zhao, Y.; Liu, Q.; Ji, C. Emergency Constellation Design Based on Micro SAR Satellite. In Proceedings of the 2021 Global Reliability and Prognostics and Health Management, Nanjing, China, 15–17 October 2021; pp. 1–5. [Google Scholar]
- Alam, S.; Kurt, G.K.; Yanikomeroglu, H.; Zhu, P.; Dao, N.D. High Altitude Platform Station Based Super Macro Base Station Constellations. IEEE Commun. Mag. 2021, 59, 103–109. [Google Scholar] [CrossRef]
- Alexandre, L.C.; Linhares, A.; Neto, G.; Sodre, A.C. High-Altitude Platform Stations as IMT Base Stations: Connectivity from the Stratosphere. IEEE Commun. Mag. 2021, 59, 30–35. [Google Scholar] [CrossRef]
- Kurt, G.K.; Khoshkholgh, M.G.; Alfattani, S.; Ibrahim, A.; Darwish, T.S.J.; Alam, S.; Yanikomeroglu, H.; Yongacoglu, A. A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future. IEEE Commun. Surv. Tutorials 2021, 23, 729–779. [Google Scholar] [CrossRef]
- Deka, R.; Mishra, V.; Ahmed, I.; Anees, S.; Alam, M.S. Performance Analysis of HAPS Assisted Dual-Hop Hybrid RF/FSO System. In Proceedings of the 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Virtual, 27–30 September 2021; pp. 1–6. [Google Scholar]
- Na, Z.; Wang, Y.; Xiong, M. Joint trajectory and power optimization for NOMA-based high altitude platform relaying system. Wirel. Net. 2021, 1–12. [Google Scholar] [CrossRef]
- Ke, M.; Gao, Z.; Huang, Y.; Ding, G.; Ng, D.W.K.; Wu, Q.; Zhang, J. An Edge Computing Paradigm for Massive IoT Connectivity Over High-Altitude Platform Networks. IEEE Wirel. Commun. 2021, 28, 102–109. [Google Scholar] [CrossRef]
- Hu, B.; Wang, L.; Chen, S.; Cui, J.; Chen, L. An Uplink Throughput Optimization Scheme for UAV-Enabled Urban Emergency Communications. IEEE Internet Things J. 2021, 9, 4291–4302. [Google Scholar] [CrossRef]
- Alzahrani, B.; Oubbati, O.S.; Barnawi, A.; Atiquzzaman, M.; Alghazzawi, D. UAV assistance paradigm: State-of-the-art in applications and challenges. J. Netw. Comput. Appl. 2020, 166, 102706. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, T.; Wang, S. Trajectory Planning for Multi-UAV Assisted Wireless Networks in Post-Disaster Scenario. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Arafat, M.Y.; Moh, S. Localization and Clustering Based on Swarm Intelligence in UAV Networks for Emergency Communications. IEEE Internet Things J. 2019, 6, 8958–8976. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, H.; Chen, Y.; Zhu, X.; Ning, Y.; Zhu, W. UEE-RPL: A UAV-Based Energy Efficient Routing for Internet of Things. IEEE Trans. Green Commun. Netw. 2021, 5, 1333–1344. [Google Scholar] [CrossRef]
- Lin, N.; Liu, Y.; Zhao, L.; Wu, D.O.; Wang, Y. An Adaptive UAV Deployment Scheme for Emergency Networking. IEEE Trans. Wirel. Commun. 2021, 21, 2383–2398. [Google Scholar] [CrossRef]
- Dhasarathan, V.; Singh, M.; Malhotra, J. Development of high-speed FSO transmission link for the implementation of 5G and Internet of Things. Wirel. Net. 2019, 26, 2403–2412. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Shahjalal, M.; Hasan, M.; Jang, Y.M. The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges. Appl. Sci. 2019, 9, 4367. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Liu, Y.; Jiang, F.; Chi, N. High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception. Opt. Commun. 2018, 425, 106–112. [Google Scholar] [CrossRef]
- Alsabah, M.; Naser, M.A.; Mahmmod, B.M.; Abdulhussain, S.H.; Eissa, M.R.; Al-Baidhani, A.; Noordin, N.K.; Sait, S.M.; Al-Utaibi, K.A.; Hashim, F. 6G Wireless Communications Networks: A Comprehensive Survey. IEEE Access 2021, 9, 148191–148243. [Google Scholar] [CrossRef]
- Sun, X.; Yu, L.; Zhang, T. Latency Aware Transmission Scheduling for Steerable Free Space Optics. In IEEE Transactions on Mobile Computing; IEEE: Piscataway, NJ, USA, 2021; p. 1. [Google Scholar] [CrossRef]
- Wu, D.; Sun, X.; Ansari, N. An FSO-Based Drone Assisted Mobile Access Network for Emergency Communications. IEEE Trans. Netw. Sci. Eng. 2019, 7, 1597–1606. [Google Scholar] [CrossRef]
- Ansari, N.; Wu, D.; Sun, X. FSO as backhaul and energizer for drone-assisted mobile access networks. ICT Express 2020, 6, 139–144. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, X.; Wang, C. On Optimizing the Divergence Angle of an FSO based Fronthaul Link in Drone Assisted Mobile Networks. IEEE Internet Things J. 2021, 9, 6914–6921. [Google Scholar] [CrossRef]
- Swaminathan, R.; Sharma, S.; Vishwakarma, N.; Madhukumar, A.S. HAPS-Based Relaying for Integrated Space–Air–Ground Networks With Hybrid FSO/RF Communication: A Performance Analysis. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 1581–1599. [Google Scholar] [CrossRef]
- Shah, S.; Siddharth, M.; Vishwakarma, N.; Swaminathan, R.; Madhukumar, A.S. Adaptive-Combining-Based Hybrid FSO/RF Satellite Communication With and Without HAPS. IEEE Access 2021, 9, 81492–81511. [Google Scholar] [CrossRef]
- Trichili, A.; Park, K.H.; Zghal, M.; Ooi, B.S.; Alouini, M.S. Communicating using spatial mode multiplexing: Potentials, challenges, and perspectives. IEEE Commun. Surv. Tutor. 2019, 21, 3175–3203. [Google Scholar] [CrossRef] [Green Version]
- Trichili, A.; Cox, M.A.; Ooi, B.S.; Alouini, M.-S. Roadmap to free space optics. J. Opt. Soc. Am. B 2020, 37, A184–A201. [Google Scholar] [CrossRef]
- Cox, M.A.; Cheng, L.; Rosales-Guzmán, C.; Forbes, A. Modal diversity for robust free-space optical communications. Phys. Rev. Appl. 2018, 10, 024020. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Song, H.; Zhang, R.; Zhao, Z.; Liu, C.; Pang, K.; Song, H.; Du, J.; Willner, A.N.; Almaiman, A.; et al. Increasing system tolerance to turbulence in a 100-Gbit/s QPSK free-space optical link using both mode and space diversity. Opt. Commun. 2020, 480, 126488. [Google Scholar] [CrossRef]
- Zheng, D.; Li, Y.; Zhou, H.; Bian, Y.; Yang, C.; Li, W.; Qiu, J.; Guo, H.; Hong, X.; Zuo, Y.; et al. Performance enhancement of free-space optical communications under atmospheric turbulence using modes diversity coherent receipt. Opt. Express 2018, 26, 28879–28890. [Google Scholar] [CrossRef]
- Arikawa, M.; Ito, T. Performance of mode diversity reception of a polarization-division-multiplexed signal for free-space optical communication under atmospheric turbulence. Opt. Express 2018, 26, 28263–28276. [Google Scholar] [CrossRef]
- Song, H.; Li, L.; Pang, K.; Zhang, R.; Zou, K.; Zhao, Z.; Du, J.; Song, H.; Liu, C.; Cao, Y.; et al. Demonstration of using two aperture pairs combined with multiple-mode receivers and MIMO signal processing for enhanced tolerance to turbulence and misalignment in a 10 Gbit/s QPSK FSO link. Opt. Lett. 2020, 45, 3042–3045. [Google Scholar] [CrossRef]
- Yousif, B.B.; Elsayed, E.E. Performance Enhancement of an Orbital-Angular-Momentum-Multiplexed Free-Space Optical Link Under Atmospheric Turbulence Effects Using Spatial-Mode Multiplexing and Hybrid Diversity Based on Adaptive MIMO Equalization. IEEE Access 2019, 7, 84401–84412. [Google Scholar] [CrossRef]
- Amphawan, A.; Chaudhary, S.; Neo, T.-K.; Kakavand, M.; Dabbagh, M. Radio-over-free space optical space division multiplexing system using 3-core photonic crystal fiber mode group multiplexers. Wirel. Net. 2020, 27, 211–225. [Google Scholar] [CrossRef]
- Amphawan, A.; Chaudhary, S.; Ghassemlooy, Z.; Neo, T.-K. 2×2-channel mode-wavelength division multiplexing in Ro-FSO system with PCF mode group demultiplexers and equalizers. Opt. Commun. 2020, 467, 125539. [Google Scholar] [CrossRef]
- Chaudhary, S.; Amphawan, A. Solid core PCF-based mode selector for MDM-Ro-FSO transmission systems. Photon-Netw. Commun. 2018, 36, 263–271. [Google Scholar] [CrossRef]
- Chaudhary, S.; Amphawan, A. Selective excitation of LG 00, LG 01, and LG 02 modes by a solid core PCF based mode selector in MDM-Ro-FSO transmission systems. Laser Phys. 2018, 28, 075106. [Google Scholar] [CrossRef]
- Goodman, J.W. Introduction to Fourier Optics; Macmillan Learning: New York, NY, USA, 2017. [Google Scholar]
- Chaudhary, S.; Amphawan, A. High-speed MDM-Ro-FSO system by incorporating spiral-phased Hermite Gaussian modes. Photon-Netw. Commun. 2018, 35, 374–380. [Google Scholar] [CrossRef]
- Snyder, A.W.; Love, J.D. Optical Waveguide Theory (Science Paperbacks); Chapman and Hall: London, UK, 1983. [Google Scholar]
- Amhoud, E.-M.; Ooi, B.S.; Alouini, M.-S. A Unified Statistical Model for Atmospheric Turbulence-Induced Fading in Orbital Angular Momentum Multiplexed FSO Systems. IEEE Trans. Wirel. Commun. 2019, 19, 888–900. [Google Scholar] [CrossRef]
- Amphawan, A.; O’Brien, D. Modal decomposition of output field for holographic mode field generation in a multimode fiber channel. In Proceedings of the International Conference on Photonics, Langkawi, Malaysia, 5–7 July 2010; pp. 1–5. [Google Scholar]
- Rogel-Salazar, J.; Treviño, J.P.; Chávez-Cerda, S. Engineering structured light with optical vortices. J. Opt. Soc. Am. B 2014, 31, A46–A50. [Google Scholar] [CrossRef]
- Amphawan, A.; Payne, F.; O’Brien, D.; Shah, N. Derivation of an analytical expression for the power coupling coefficient for offset launch into multimode fiber. J. Lightwave Technol. 2009, 28, 861–869. [Google Scholar] [CrossRef]
- Andrews, L.C.; Phillips, R.L. Laser Beam Propagation through Random Media; SPIE Optical Engineering Press: Bellingham, WA, USA, 1998; pp. 47–50. [Google Scholar]
- Ren, Y.; Huang, H.; Xie, G.; Ahmed, N.; Yan, Y.; Erkmen, B.I.; Chandrasekaran, N.; Lavery, M.; Steinhoff, N.K.; Tur, M.; et al. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. Opt. Lett. 2013, 38, 4062–4065. [Google Scholar] [CrossRef] [PubMed]
- Andrews, L.C. An Analytical Model for the Refractive Index Power Spectrum and Its Application to Optical Scintillations in the Atmosphere. J. Mod. Opt. 1992, 39, 1849–1853. [Google Scholar] [CrossRef]
- Funes, G.; Vial, M.; Anguita, J.A. Orbital-angular-momentum crosstalk and temporal fading in a terrestrial laser link sing single-mode fiber coupling. Opt. Express 2015, 23, 23133–23142. [Google Scholar] [CrossRef]
- Anguita, J.A.; Neifeld, M.A.; Vasic, B.V. Modeling channel interference in an orbital angular momentum-multiplexed laser link. In Free-Space Laser Communications IX; International Society for Optics and Photonics: San Diego, CA, USA, 2009; Volume 7464, p. 74640U. [Google Scholar]
- Amphawan, A.; Mishra, V.; Nisar, K.; Nedniyom, B. Real-time holographic backlighting positioning sensor for enhanced power coupling efficiency into selective launches in multimode fiber. J. Mod. Opt. 2012, 59, 1745–1752. [Google Scholar] [CrossRef]
- Maurer, T.; Driggers, R.G.; Vollmerhausen, R.H.; Friedman, M.H. NVTherm improvements. In Infrared and Passive Millimeter-Wave Imaging Systems: Design, Analysis, Modeling, and Testing, Orlando, USA; International Society for Optics and Photonics: Bellingham, WA, USA, 2002; Volume 4719, pp. 15–23. [Google Scholar]
- U.M. Office. National Meteorological Library and Archive Fact Sheet 3—Water in the Atmosphere. 2012. Available online: https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/library-and-archive/library/publications/factsheets/factsheet_3-water-in-the-atmosphere.pdf (accessed on 23 April 2022).
- Falkovich, G.; Fouxon, A.; Stepanov, M.G. Acceleration of rain initiation by cloud turbulence. Nature 2002, 419, 151–154. [Google Scholar] [CrossRef]
- Mahalov, A.; McDaniel, A. Long-range propagation through inhomogeneous turbulent atmosphere: Analysis beyond phase screens. Phys. Scr. 2018, 94, 034003. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, H.; Hao, Y.; Sun, H.; Wei, Z. Effects of Atmospheric Turbulence on OAM-POL-FDM Hybrid Multiplexing Communication System. Appl. Sci. 2019, 9, 5063. [Google Scholar] [CrossRef] [Green Version]
- Sadot, D.; Kopeika, N.S. Forecasting optical turbulence strength on the basis of macroscale meteorology and aerosols: Models and validation. Opt. Eng. 1992, 31, 200–212. [Google Scholar] [CrossRef]
- Sarker, N.A.; Badrudduza, A.S.M.; Islam, S.R.; Islam, S.H.; Kundu, M.K.; Ansari, I.S.; Kwak, K.S. On the Intercept Probability and Secure Outage Analysis of Mixed (α–κ–μ)-Shadowed and Málaga Turbulent Models. IEEE Access 2021, 9, 133849–133860. [Google Scholar] [CrossRef]
- Singh, H. Performance analysis of FSO system with spatial diversity using two-point Padé approximation. Opt. Quantum Electron. 2021, 53, 1–25. [Google Scholar] [CrossRef]
- Wenjing, G.; Ziyuan, S.; Yueying, Z.; Lei, Y. Channel Modeling for Ground-to-UAV Free-Space Optical Communication Systems. In Proceedings of the 26th Optoelectronics and Communications Conference, Hong Kong, China, 3–7 July 2021; Optica Publishing Group: Washington, DC, USA, 2021; p. S4B.6. [Google Scholar]
- Khallaf, H.S.; Kato, K.; Mohamed, E.M.; Sait, S.M.; Yanikomeroglu, H.; Uysal, M. Composite Fading Model for Aerial MIMO FSO Links in the Presence of Atmospheric Turbulence and Pointing Errors. IEEE Wirel. Commun. Lett. 2021, 10, 1295–1299. [Google Scholar] [CrossRef]
- El Saghir, B.M.; El Mashade, M.B.; Aboshosha, A.M. Performance analysis of modulating retro-reflector FSO communication systems over Málaga turbulence channels. Opt. Commun. 2020, 474, 126160. [Google Scholar] [CrossRef]
- Cox, M.A.; Mphuthi, N.; Nape, I.; Mashaba, N.; Cheng, L.; Forbes, A. Structured light in turbulence. IEEE J. Sel. Top. Quantum Electron. 2020, 27, 1–21. [Google Scholar] [CrossRef]
- Taylor, G.I. Statistical theory of turbulence-II. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1935, 151, 444–454. [Google Scholar] [CrossRef] [Green Version]
Channel/Mode, i | Mode, LP lm | Signal | Type | Wavelength |
---|---|---|---|---|
1 | LP 01 | Sensor 1 | Primary | 850 nm |
2 | LP 03 | Sensor 1 | Backup | 850 nm |
3 | LP 11 | Sensor 2 | Primary | 880 nm |
4 | LP 13 | Sensor 2 | Backup | 880 nm |
5 | LP 21 | Sensor 3 | Primary | 910 nm |
6 | LP 23 | Sensor 3 | Backup | 910 nm |
7 | LP 31 | Sensor 4 | Primary | 940 nm |
8 | LP 33 | Sensor 4 | Backup | 940 nm |
Parameter | Value |
---|---|
Beam waist | 0.025 m |
Operating wavelengths | 850 nm, 880 nm, 910 nm and 940 nm |
Rayleigh range | 0.5 m |
Propagation distance | 400 m |
Transmitted beam diameter | 3 mm |
Beam divergence | 0.5 mrad |
Photodetector responsivity | 0.6 A/W |
Focal lengths of transmitter lens | 40 cm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amphawan, A.; Arsad, N.; Neo, T.-K.; Jasser, M.B.; Mohd Ramly, A. Post-Flood UAV-Based Free Space Optics Recovery Communications with Spatial Mode Diversity. Electronics 2022, 11, 2257. https://doi.org/10.3390/electronics11142257
Amphawan A, Arsad N, Neo T-K, Jasser MB, Mohd Ramly A. Post-Flood UAV-Based Free Space Optics Recovery Communications with Spatial Mode Diversity. Electronics. 2022; 11(14):2257. https://doi.org/10.3390/electronics11142257
Chicago/Turabian StyleAmphawan, Angela, Norhana Arsad, Tse-Kian Neo, Muhammed Basheer Jasser, and Athirah Mohd Ramly. 2022. "Post-Flood UAV-Based Free Space Optics Recovery Communications with Spatial Mode Diversity" Electronics 11, no. 14: 2257. https://doi.org/10.3390/electronics11142257
APA StyleAmphawan, A., Arsad, N., Neo, T. -K., Jasser, M. B., & Mohd Ramly, A. (2022). Post-Flood UAV-Based Free Space Optics Recovery Communications with Spatial Mode Diversity. Electronics, 11(14), 2257. https://doi.org/10.3390/electronics11142257