Use of UAVs and Deep Learning for Beach Litter Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Artificial Intelligence for Object Detection
2.2. Object Detection Training Dataset Creation
Image Processing and Labelling
2.3. Object Detection Algorithm Training
2.4. Geolocation of Object Detections
- Calculation of pixel size of the footage.
- Calculation of the distance (in m) between Meridians and Parallels at the latitude of recording.
- Calculation of the horizontal and vertical distance of the prediction box centre from the image centre.
- Transformation of the prediction distance to the real-world distance and the calculation of the prediction coordinates.
2.4.1. Pixel Size
2.4.2. Distance between Meridians and Parallels
2.4.3. Latitude and Longitude of Prediction Box
3. Results
4. Discussion
5. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tekman, M.B.; Krumpen, T.; Bergmann, M. Marine Litter on Deep Arctic Seafloor Continues to Increase and Spreads to the North at the HAUSGARTEN Observatory. Deep Sea Res. Part I Oceanogr. Res. Pap. 2017, 120, 88–99. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, M.; Lutz, B.; Tekman, M.B.; Gutow, L. Citizen Scientists Reveal: Marine Litter Pollutes Arctic Beaches and Affects Wild Life. Mar. Pollut. Bull. 2017, 125, 535–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksson, C.; Burton, H.; Fitch, S.; Schulz, M.; van den Hoff, J. Daily Accumulation Rates of Marine Debris on Sub-Antarctic Island Beaches. Mar. Pollut. Bull. 2013, 66, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Kühn, S.; Bravo Rebolledo, E.L.; van Franeker, J.A. Deleterious Effects of Litter on Marine Life. In Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 75–116. ISBN 978-3-319-16510-3. [Google Scholar]
- Mouat, J.; Lopez Lozano, R.; Bateson, H. Economic Impacts of Marine Litter; Kommunernes Internationale Miljøorganisation (KIMO): Lerwick, UK, 2010; 117p. [Google Scholar]
- Ballancea, A.; Ryanb, P.G.; Turpieb, J.K. How Much Is a Clean Beach Worth? The Impact of Litter on Beach Users in the Cape Peninsula, South Africa. S. Afr. J. Sci. 2000, 96, 210–213. [Google Scholar]
- Botero, C.M.; Anfuso, G.; Milanes, C.; Cabrera, A.; Casas, G.; Pranzini, E.; Williams, A.T. Litter Assessment on 99 Cuban Beaches: A Baseline to Identify Sources of Pollution and Impacts for Tourism and Recreation. Mar. Pollut. Bull. 2017, 118, 437–441. [Google Scholar] [CrossRef]
- Williams, A.; Rangel-Buitrago, N.; Anfuso, G.; Cervantes, O.; Botero, C.-M. Litter Impacts on Scenery and Tourism on the Colombian North Caribbean Coast. Tour. Manag. 2016, 55, 209–224. [Google Scholar] [CrossRef]
- García-Rivera, S.; Lizaso, J.L.S.; Millán, J.M.B. Composition, Spatial Distribution and Sources of Macro-Marine Litter on the Gulf of Alicante Seafloor (Spanish Mediterranean). Mar. Pollut. Bull. 2017, 121, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Ioakeimidis, C.; Zeri, C.; Kaberi, H.; Galatchi, M.; Antoniadis, K.; Streftaris, N.; Galgani, F.; Papathanassiou, E.; Papatheodorou, G. A Comparative Study of Marine Litter on the Seafloor of Coastal Areas in the Eastern Mediterranean and Black Seas. Mar. Pollut. Bull. 2014, 89, 296–304. [Google Scholar] [CrossRef] [Green Version]
- Woodall, L.C.; Sanchez-Vidal, A.; Canals, M.; Paterson, G.L.J.; Coppock, R.; Sleight, V.; Calafat, A.; Rogers, A.D.; Narayanaswamy, B.E.; Thompson, R.C. The Deep Sea Is a Major Sink for Microplastic Debris. R. Soc. Open Sci. 2014, 1, 140317. [Google Scholar] [CrossRef] [Green Version]
- Kusui, T.; Noda, M. International Survey on the Distribution of Stranded and Buried Litter on Beaches along the Sea of Japan. Mar. Pollut. Bull. 2003, 47, 175–179. [Google Scholar] [CrossRef]
- Cruz, C.J.; Muñoz-Perez, J.J.; Carrasco-Braganza, M.I.; Poullet, P.; Lopez-Garcia, P.; Contreras, A.; Silva, R. Beach Cleaning Costs. Ocean Coast. Manag. 2020, 188, 105118. [Google Scholar] [CrossRef]
- Martin, C.; Parkes, S.; Zhang, Q.; Zhang, X.; McCabe, M.F.; Duarte, C.M. Use of Unmanned Aerial Vehicles for Efficient Beach Litter Monitoring. Mar. Pollut. Bull. 2018, 131, 662–673. [Google Scholar] [CrossRef] [Green Version]
- Muchiri, N.; Kimathi, S. A Review of Applications and Potential Applications of UAV. In Proceedings of the 2016 Annual Conference on Sustainable Research and Innovation, Juja, Kenya, 4 May 2016; p. 4. [Google Scholar]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd ed.; O’Reilly Media: Sebastopol, ON, Canada, 2019; ISBN 978-1-4920-3264-9. [Google Scholar]
- Proença, P.F.; Simões, P. TACO: Trash Annotations in Context for Litter Detection. arXiv 2020, arXiv:2003.06975. [Google Scholar]
- Abid, M. Bottles and Cans Images. Available online: https://www.kaggle.com/datasets/moezabid/bottles-and-cans (accessed on 25 October 2022).
- Abla, M. Garbage Classification (12 Classes). Available online: https://www.kaggle.com/datasets/126ab2c7f7e22add276bc29e44b97f635e3f6a04368afb20130a83518a9056b9 (accessed on 25 October 2022).
- Nokia Nokia X10 Mobile. Available online: https://www.nokia.com/phones/en_int/nokia-x-10 (accessed on 25 October 2022).
- Martin, C.; Zhang, Q.; Zhai, D.; Zhang, X.; Duarte, C.M. Enabling a Large-Scale Assessment of Litter along Saudi Arabian Red Sea Shores by Combining Drones and Machine Learning. Environ. Pollut. 2021, 277, 116730. [Google Scholar] [CrossRef]
- US National Geospatial-Intelligence Agency. Administrative Boundaries World 1995. Available online: https://earthworks.stanford.edu/catalog/tufts-worldboundaries95 (accessed on 21 October 2022).
- UM_GeoLab Ramla Bay May 2019—3D Model by UM_GeoLab (@UM_Geo_Lab). Available online: https://sketchfab.com/models/f0d48f607b634fe4a2c8ab16d66c86ea/embed?autostart=1 (accessed on 26 November 2022).
- Wada, K. Wkentaro/Labelme. Available online: https://github.com/wkentaro/labelme (accessed on 3 June 2022).
- Ultralytics YOLOv5. Available online: https://github.com/ultralytics/yolov5 (accessed on 3 June 2022).
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2016, arXiv:1506.02640. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv 2016, arXiv:1506.01497. [Google Scholar] [CrossRef] [Green Version]
- Padilla, R.; Netto, S.L.; da Silva, E.A.B. A Survey on Performance Metrics for Object-Detection Algorithms. In Proceedings of the 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niterói, Brazil, 1–3 July 2020; pp. 237–242. [Google Scholar]
- Pix4D Support. TOOLS—GSD Calculator. Available online: http://support.pix4d.com/hc/en-us/articles/202560249-TOOLS-GSD-calculator (accessed on 16 June 2022).
- US National Geospatial-Intelligence Agency. World Geodetic System 1984, Its Definition and Relationships with Local Geodetic Systems. Version 1.0.0; National Geospatial-Intelligence Agency (NGA) Standardization Document; 2014. Available online: https://earth-info.nga.mil/php/download.php?file=coord-wgs84 (accessed on 16 June 2022).
- Bugayevskiy, L.M.; Snyder, J. Map Projections: A Reference Manual, 1st ed.; Taylor & Francis: London, UK, 1995; ISBN 978-0-429-15984-8. [Google Scholar]
- Taveira-Pinto, F.; Silva, R.; Pais-Barbosa, J. Coastal Erosion Along the Portuguese Northwest Coast Due to Changing Sediment Discharges from Rivers and Climate Change. In Global Change and Baltic Coastal Zones; Schernewski, G., Hofstede, J., Neumann, T., Eds.; Coastal Research Library; Springer: Dordrecht, The Netherlands, 2011; pp. 135–151. ISBN 978-94-007-0400-8. [Google Scholar]
- Bird, E.; Lewis, N. Causes of Beach Erosion. In Beach Renourishment; Bird, E., Lewis, N., Eds.; SpringerBriefs in Earth Sciences; Springer International Publishing: Cham, Switzerland, 2015; pp. 7–28. ISBN 978-3-319-09728-2. [Google Scholar]
- National Oceanic and Atmospheric Administration What Is LIDAR. Available online: https://oceanservice.noaa.gov/facts/lidar.html (accessed on 8 November 2022).
- Stockdonf, H.F.; Sallenger, A.H., Jr.; List, J.H.; Holman, R.A. Estimation of Shoreline Position and Change Using Airborne Topographic Lidar Data. J. Coast. Res. 2002, 18, 502–513. [Google Scholar]
- Sallenger, A.H.; Krabill, W.B.; Swift, R.N.; Brock, J.; List, J.; Hansen, M.; Holman, R.A.; Manizade, S.; Sontag, J.; Meredith, A.; et al. Evaluation of Airborne Topographic Lidar for Quantifying Beach Changes. J. Coast. Res. 2003, 19, 125–133. [Google Scholar]
- Colica, E.; Micallef, A.; D’Amico, S.; Cassar, L.F.; Galdies, C. Investigating the Use of UAV Systems for Photogrammetric Applications: A Case Study of Ramla Bay (Gozo, Malta). Xjenza Online 2017, 5, 125–131. [Google Scholar] [CrossRef]
- Guastella, D.C.; Cantelli, L.; Melita, C.D.; Muscato, G. A Global Path Planning Strategy for a UGV from Aerial Elevation Maps for Disaster Response. In Proceedings of the 9th International Conference on Agents and Artificial Intelligence, Porto, Portugal, 24–26 February 2017; SCITEPRESS—Science and Technology Publications: Porto, Portugal, 2017; pp. 335–342. [Google Scholar]
- Agisoft LLC Agisoft Metashape Professional Edition 2021. Available online: https://www.agisoft.com/features/professional-edition/ (accessed on 25 November 2022).
- Topcon HiPer HR. Available online: https://www.topconpositioning.com/na/gnss-and-network-solutions/integrated-gnss-receivers/hiper-hr (accessed on 26 November 2022).
- Stentz, A. The D*Algorithm for Real-Time Planning of Optimal Traverses; The Robotics Institute, Carnegie Mellon University: Pittsburgh, PA, USA, 1994; p. 34. [Google Scholar]
- Ankerst, M.; Breunig, M.M.; Kriegel, H.-P.; Sander, J. OPTICS: Ordering Points to Identify the Clustering Structure. SIGMOD Rec. 1999, 28, 49–60. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Knowl. Discov. Data Min. 1996, 96, 1996. [Google Scholar]
Location | Latitude | Longitude | Region | Reference/Source |
---|---|---|---|---|
Paradise Bay | 35.981757 | 14.33372 | Malta | Survey |
Gnejna Bay | 35.920815 | 14.344291 | Malta | Survey |
Ramla Bay | 36.061839 | 14.284407 | Malta | Survey |
Tono Mela | 38.185146 | 15.211505 | Italy | Survey |
Mortelle | 38.273681 | 15.613148 | Italy | Survey |
Catania Campus | 37.5369902 | 15.0698772 | Italy | Survey |
Station 21 | 27.785 | 35.1792 | Red Sea | Martin et al. [22] |
Station 23 | 25.7008 | 36.8118 | Red Sea | Martin et al. [22] |
Station 30 | 20.7501 | 39.4539 | Red Sea | Martin et al. [22] |
Station 40 | 18.5069 | 40.663 | Red Sea | Martin et al. [22] |
Set | Images | Annotations | Background Images |
---|---|---|---|
Training | 2476 | 6124 | 701 |
Validation | 825 | 2190 | 229 |
Test | 825 | 2297 | 224 |
TOTAL | 4126 | 10611 | 1154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfeiffer, R.; Valentino, G.; D’Amico, S.; Piroddi, L.; Galone, L.; Calleja, S.; Farrugia, R.A.; Colica, E. Use of UAVs and Deep Learning for Beach Litter Monitoring. Electronics 2023, 12, 198. https://doi.org/10.3390/electronics12010198
Pfeiffer R, Valentino G, D’Amico S, Piroddi L, Galone L, Calleja S, Farrugia RA, Colica E. Use of UAVs and Deep Learning for Beach Litter Monitoring. Electronics. 2023; 12(1):198. https://doi.org/10.3390/electronics12010198
Chicago/Turabian StylePfeiffer, Roland, Gianluca Valentino, Sebastiano D’Amico, Luca Piroddi, Luciano Galone, Stefano Calleja, Reuben A. Farrugia, and Emanuele Colica. 2023. "Use of UAVs and Deep Learning for Beach Litter Monitoring" Electronics 12, no. 1: 198. https://doi.org/10.3390/electronics12010198
APA StylePfeiffer, R., Valentino, G., D’Amico, S., Piroddi, L., Galone, L., Calleja, S., Farrugia, R. A., & Colica, E. (2023). Use of UAVs and Deep Learning for Beach Litter Monitoring. Electronics, 12(1), 198. https://doi.org/10.3390/electronics12010198