Analysis of the Impact of Particulate Matter on Net Load and Behind-the-Meter PV Decoupling
Abstract
:1. Introduction
- Analyze the impact of the intensity of particulate matter on the load demand and PV generation;
- Build the PV forecast model considering the intensity of the particulate matter;
- Build the load demand forecast model considering BtM PV generation.
2. Load Demand Forecast Considering BtM PV Generation and Particulate Matter
2.1. Load Demand Forecast with BtM PV Generation
2.2. Pv Forecast Considering Particulate Matter
2.3. Load Demand Forecast Model
3. Case Study
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Steinfeld, J.I. Atmospheric chemistry and physics: From air pollution to climate change. Environ. Sci. Policy Sustain. Dev. 1998, 40, 26. [Google Scholar] [CrossRef]
- Kim, H.C.; Kim, S.; Kim, B.U.; Jin, C.S.; Hong, S.; Park, R.; Son, S.W.; Bae, C.; Bae, M.; Song, C.K.; et al. Recent increase of surface particulate matter concentrations in the Seoul Metropolitan Area, Korea. Sci. Rep. 2017, 7, 4710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Deng, C.; Yao, W.; Liang, N.; Xia, P.; Cao, P.; Dong, Y.; Zhang, Y.A.; Liu, Z.; Li, D.; et al. Impacts of stochastic forecast errors of renewable energy generation and load demands on microgrid operation. Renew. Energy 2019, 133, 442–461. [Google Scholar] [CrossRef]
- Zhang, N.; Kang, C.; Xia, Q.; Liang, J. Modeling conditional forecast error for wind power in generation scheduling. IEEE Trans. Power Syst. 2013, 29, 1316–1324. [Google Scholar] [CrossRef]
- Said, S.A.; Walwil, H.M. Fundamental studies on dust fouling effects on PV module performance. Sol. Energy 2014, 107, 328–337. [Google Scholar] [CrossRef]
- Son, J.; Jeong, S.; Park, H.; Park, C.E. The effect of particulate matter on solar photovoltaic power generation over the Republic of Korea. Environ. Res. Lett. 2020, 15, 084004. [Google Scholar] [CrossRef]
- Dogan, T.R.; Beşli, N.; Aktacir, M.A.; Dinç, M.N.; İlkhan, M.A.; Öztürk, F.; Yıldız, M. Seasonal effects of atmospheric particulate matter on performance of different types of photovoltaic modules in sanliurfa, Turkey. Atmos. Pollut. Res. 2020, 11, 2173–2181. [Google Scholar] [CrossRef]
- Micheli, L.; Muller, M.; Kurtz, S. Determining the effects of environment and atmospheric parameters on PV field performance. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 1724–1729. [Google Scholar]
- Haque, M.M.; Wolfs, P. A review of high PV penetrations in LV distribution networks: Present status, impacts and mitigation measures. Renew. Sustain. Energy Rev. 2016, 62, 1195–1208. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, N.; Chen, Q.; Kirschen, D.S.; Li, P.; Xia, Q. Data-driven probabilistic net load forecasting with high penetration of behind-the-meter PV. IEEE Trans. Power Syst. 2017, 33, 3255–3264. [Google Scholar] [CrossRef]
- Li, K.; Wang, F.; Mi, Z.; Fotuhi-Firuzabad, M.; Duić, N.; Wang, T. Capacity and output power estimation approach of individual behind-the-meter distributed photovoltaic system for demand response baseline estimation. Appl. Energy 2019, 253, 113595. [Google Scholar] [CrossRef]
- Xuan, Z.; Gao, X.; Li, K.; Wang, F.; Ge, X.; Hou, Y. PV-load decoupling based demand response baseline load estimation approach for residential customer with distributed PV system. IEEE Trans. Ind. Appl. 2020, 56, 6128–6137. [Google Scholar] [CrossRef]
- Vagropoulos, S.I.; Chouliaras, G.; Kardakos, E.G.; Simoglou, C.K.; Bakirtzis, A.G. Comparison of SARIMAX, SARIMA, modified SARIMA and ANN-based models for short-term PV generation forecasting. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016; pp. 1–6. [Google Scholar]
- Espinoza, M.; Joye, C.; Belmans, R.; De Moor, B. Short-term load forecasting, profile identification, and customer segmentation: A methodology based on periodic time series. IEEE Trans. Power Syst. 2005, 20, 1622–1630. [Google Scholar] [CrossRef]
- Cai, M.; Pipattanasomporn, M.; Rahman, S. Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques. Appl. Energy 2019, 236, 1078–1088. [Google Scholar] [CrossRef]
- Tian, C.; Ma, J.; Zhang, C.; Zhan, P. A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network. Energies 2018, 11, 3493. [Google Scholar] [CrossRef] [Green Version]
- Diaconescu, E. The use of NARX neural networks to predict chaotic time series. Wseas Trans. Comput. Res. 2008, 3, 182–191. [Google Scholar]
- Abbas, F.; Feng, D.; Habib, S.; Rahman, U.; Rasool, A.; Yan, Z. Short term residential load forecasting: An improved optimal nonlinear auto regressive (NARX) method with exponential weight decay function. Electronics 2018, 7, 432. [Google Scholar] [CrossRef] [Green Version]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world—A review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Cho, D.; Yoo, C.; Im, J.; Cha, D.H. Comparative assessment of various machine learning-based bias correction methods for numerical weather prediction model forecasts of extreme air temperatures in urban areas. Earth Space Sci. 2020, 7, e2019EA000740. [Google Scholar] [CrossRef] [Green Version]
- Lilienthal, P.; Lambert, T.; Gilman, P. Computer modeling of renewable power systems. In Encyclopedia of Energy; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
Objectives | Method | Contributions | |
---|---|---|---|
Direct decoupling method [12] | Estimate BtM PV capacity | Support vector regression | Estimation of the BtM PV capacity in analytical solution |
Data-driven neural network [11] | Forecast the baseline load demand | ANN with recurrent inputs | Non-parametric prediction of baseline load demand |
Neural network with PM | Forecast the baseline load demand | ANN with recurrent inputs | Non-parametric prediction of baseline load demand considering PM intensity |
Forecast with PM | Forecast without PM | |
---|---|---|
MSE | 2.07 × 10 | 2.3004 × 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, Y.; Cho, S. Analysis of the Impact of Particulate Matter on Net Load and Behind-the-Meter PV Decoupling. Electronics 2022, 11, 2261. https://doi.org/10.3390/electronics11142261
Yoo Y, Cho S. Analysis of the Impact of Particulate Matter on Net Load and Behind-the-Meter PV Decoupling. Electronics. 2022; 11(14):2261. https://doi.org/10.3390/electronics11142261
Chicago/Turabian StyleYoo, Yeuntae, and Seokheon Cho. 2022. "Analysis of the Impact of Particulate Matter on Net Load and Behind-the-Meter PV Decoupling" Electronics 11, no. 14: 2261. https://doi.org/10.3390/electronics11142261
APA StyleYoo, Y., & Cho, S. (2022). Analysis of the Impact of Particulate Matter on Net Load and Behind-the-Meter PV Decoupling. Electronics, 11(14), 2261. https://doi.org/10.3390/electronics11142261