Convolution Neural Networks for the Automatic Segmentation of 18F-FDG PET Brain as an Aid to Alzheimer’s Disease Diagnosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. 18F-FDG PET 3D Data Acquisition and Preprocessing
2.3. Proposed Architectures
2.3.1. U-Net3D
- Conv_blocks, which are characterized by (i) two consecutive 3 × 3 × 3 filter blocks; (ii) batch normalization [20], which normalizes the inputs of hidden layers (sub-divided in mini-batch) to make the net training faster and more stable; and (iii) ReLu activation function that directly gives the input as output if the input is positive, and zero otherwise:
- Max-pooling block to halve the image size.
- U-Net3D, which is the original architecture composed of three encoder and decoder layers (Figure 2a);
- U-Net3D-NoMaxPoolingThirdDimension, where, for each layer, MaxPooling is not applied to the third dimension (Figure 2b). The network acquires more information for each layer, and a higher number of parameters must be estimated during the training phase;
- U-Net3D-TwoLevel (Figure 2c), which is a model characterized by eliminating one layer from the original architecture, reducing the number of parameters.
2.3.2. V-Net
- Conv_block composed of two successive 5 × 5 × 5 filters, followed by the same operations as those described for the U-Net architectures, i.e., batch normalization and ReLu activation (see Section 2.3.1);
- Conv3D of size 2 × 2 × 2 and stride 2 to halve the size of the image.
2.4. Data Augmentation
2.5. Training
2.6. Evaluation Methods
2.6.1. Dice Similarity Coefficient
2.6.2. Other Coefficients
- Overlapping area coefficient (AOC)
- Extra area coefficient (EAC) is an index that allows evaluating the area added by the automatic segmentation and is defined as
3. Results
3.1. Cross-Validation
3.2. Test Dataset Analysis
3.3. Inter-Observer Variability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s Disease |
PET | Positron emission tomography |
MRI | Magnetic resonance imaging |
18F-FDG PET | 18F-fluorodeoxyglucose positron emission tomography |
SUV | Standardized uptake value |
ML | Machine learning |
CNNs | Convolutional neural networks |
U-Net3D | Convolutional neural network for 3D image segmentation with U-shaped architecture |
V-Net | Convolutional neural network for 3D image segmentation with V-shaped architecture |
CT | Computed tomography |
RM | Magnetic resonance |
DL | Deep learning |
MCI | Mild cognitive impairment |
ROI | Regions of interest |
DSC | Dice similarity coefficient |
AOC | Overlapping area coefficient |
EAC | Extra area coefficient |
References
- Ferreira, L.K.; Busatto, G.F. Neuroimaging in Alzheimer’s Disease: Current Role in Clinical Practice and Potential Future Applications. Clinics 2011, 66, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, C.; Mena, E.; Subramaniam, R.M. Brain PET in the Diagnosis of Alzheimer’s Disease. Clin. Nucl. Med. 2014, 39, e413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, R.K.J.; Bohnen, N.I.; Wong, K.K.; Minoshima, S.; Frey, K.A. Brain PET in Suspected Dementia: Patterns of Altered FDG Metabolism. Radiographics 2014, 34, 684–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, B.; Bagci, U.; Mansoor, A.; Xu, Z.; Mollura, D.J. A Review on Segmentation of Positron Emission Tomography Images. Comput. Biol. Med. 2014, 50, 76–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27 June–30 June 2016. [Google Scholar]
- Dou, Q.; Yu, L.; Chen, H.; Jin, Y.; Yang, X.; Qin, J.; Heng, P.A. 3D Deeply Supervised Network for Automated Segmentation of Volumetric Medical Images. Med. Image Anal. 2017, 41, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; Volume 9901 LNCS, pp. 424–432. [Google Scholar] [CrossRef] [Green Version]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Jindal, V. Brain Tumor Segmentation and Survival Prediction Using Deep Neural Networks. 2020, pp. 1–15. Available online: https://www.cse.iitb.ac.in/~shalabhgupta/Report.pdf (accessed on 9 June 2022).
- Fabijańska, A.; Vacavant, A.; Lebre, M.A.; Pavan, A.L.M.; de Pina, D.R.; Abergel, A.; Chabrot, P.; Magnin, B. U-Catchcc: An Accurate Hcc Detector in Hepatic Dce-Mri Sequences Based on an u-Net Framework. In Proceedings of the International Conference, ICCVG 2018, Warsaw, Poland, 17–19 September 2018; Volume 11114 LNCS, pp. 319–328. [Google Scholar] [CrossRef]
- Wahid, K.A.; Ahmed, S.; He, R.; van Dijk, L.V.; Teuwen, J.; McDonald, B.A.; Salama, V.; Mohamed, A.S.R.; Salzillo, T.; Dede, C.; et al. Evaluation of Deep Learning-Based Multiparametric MRI Oropharyngeal Primary Tumor Auto-Segmentation and Investigation of Input Channel Effects: Results from a Prospective Imaging Registry. Clin. Transl. Radiat. Oncol. 2022, 32, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Han, J.; Jia, Y.; Gou, F. Lung Nodule Detection via 3D U-Net and Contextual Convolutional Neural Network. In Proceedings of the 2018 International Conference on Networking and Network Applications (NaNA), Xi’an, China, 12–15 October 2018; pp. 356–361. [Google Scholar] [CrossRef]
- González Sánchez, J.C.; Magnusson, M.; Sandborg, M.; Carlsson Tedgren, Å.; Malusek, A. Segmentation of Bones in Medical Dual-Energy Computed Tomography Volumes Using the 3D U-Net. Phys. Med. 2020, 69, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Bourigault, E.; McGowan, D.R.; Mehranian, A.; Papież, B.W. Multimodal PET/CT Tumour Segmentation and Prediction of Progression-Free Survival Using a Full-Scale UNet with Attention; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Ding, Y.; Sohn, J.H.; Kawczynski, M.G.; Trivedi, H.; Harnish, R.; Jenkins, N.W.; Lituiev, D.; Copeland, T.P.; Aboian, M.S.; Aparici, C.M.; et al. A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain. Radiology 2018, 290, 456. [Google Scholar] [CrossRef] [PubMed]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical Diagnosis of Alzheimer’s Disease: Report of the NINCDS-ADRDA Work Group⋆ under the Auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, R.C. Mild Cognitive Impairment as a Diagnostic Entity. J. Intern. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Varrone, A.; Asenbaum, S.; Vander Borght, T.; Booij, J.; Nobili, F.; Någren, K.; Darcourt, J.; Kapucu, Ö.L.; Tatsch, K.; Bartenstein, P.; et al. EANM Procedure Guidelines for PET Brain Imaging Using [18F]FDG, Version 2. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 2103–2110. [Google Scholar] [CrossRef] [PubMed]
- McAuliffe, M.J.; Lalonde, F.M.; McGarry, D.; Gandler, W.; Csaky, K.; Trus, B.L. Medical Image Processing, Analysis & Visualization in Clinical Research. In Proceedings of the IEEE Symposium on Computer-Based Medical Systems, Aveiro, Portugal, 7–9 June 2021; pp. 381–388. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning (ICML 2015), Lille, France, 6–11 July 2015; Volume 1, pp. 448–456. [Google Scholar]
- Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 9 June 2022).
- Gerard, C. TensorFlow.Js. In Practical Machine Learning in JavaScript; Springer: Berlin/Heidelberg, Germany, 2021; pp. 25–43. [Google Scholar] [CrossRef]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-Generation Hyperparameter Optimization Framework. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2623–2631. [Google Scholar] [CrossRef]
- Berrar, D. Cross-Validation. In Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1–3, pp. 542–545. [Google Scholar] [CrossRef]
- Duffy, I.R.; Boyle, A.J.; Vasdev, N. Improving PET Imaging Acquisition and Analysis With Machine Learning: A Narrative Review With Focus on Alzheimer’s Disease and Oncology. Mol. Imaging 2019, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Akkus, Z.; Galimzianova, A.; Hoogi, A.; Rubin, D.L.; Erickson, B.J. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. J. Digit. Imaging 2017, 30, 449–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Batch-Size | Learning-Rate | Decay-Rate | Dropout | |
---|---|---|---|---|
U-Net3D | 14 | 0.07 | 9.95 × 10−5 | 0.26 |
U-Net3D-NoMaxPoolingThirdDim | 17 | 0.04 | 8.46 × 10−5 | 0.33 |
U-Net3D-TwoLevel | 2 | 0.07 | 7.02 × 10−5 | 0.41 |
V-Net | 2 | 2.29 × 10−4 | 4.43 × 10−6 | 0.17 |
V-Net-TwoLevel | 4 | 2.29 × 10−4 | 4.43 × 10−6 | 0.17 |
DSC | ||
---|---|---|
Training | Validation | |
U-Net3D | 0.83 (±0.03) | 0.83 (±0.02) |
U-Net3D-NoMaxPoolingThirdDim | 0.79 (±0.04) | 0.76 (±0.04) |
U-Net3D-TwoLevel | 0.80 (±0.05) | 0.80 (±0.08) |
V-Net | 0.46 (±0.03) | 0.51 (±0.03) |
V-Net-TwoLevel | 0.50 (±0.02) | 0.57 (±0.03) |
DSC | AOC | EAC | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lobe Frontal | Lobe Parietal | Lobe Temporal | Lobe Frontal | Lobe Parietal | Lobe Temporal | Lobe Frontal | Lobe Parietal | Lobe Temporal | ||||||||||
Right | Left | Right | Left | Right | Left | Right | Left | Right | Left | Right | Left | Right | Left | Right | Left | Right | Left | |
U-Net3D | 0.74 | 0.77 | 0.76 | 0.74 | 0.76 | 0.77 | 0.75 | 0.75 | 0.73 | 0.73 | 0.71 | 0.71 | 0.42 | 0.39 | 0.35 | 0.33 | 0.31 | 0.31 |
(±0.10) | (±0.09) | (±0.10) | (±0.08) | (±0.10) | (±0.10) | (±0.12) | (±0.11) | (±0.09) | (±0.09) | (±0.10) | (±0.09) | (±0.15) | (±0.12) | (±0.17) | (±0.16) | (±0.15) | (±0.14) | |
U-Net3D-NoMaxPoolingThirdDim | 0.70 | 0.73 | 0.74 | 0.73 | 0.74 | 0.73 | 0.64 | 0.65 | 0.66 | 0.66 | 0.66 | 0.66 | 0.32 | 0.30 | 0.30 | 0.29 | 0.29 | 0.28 |
(±0.14) | (±0.11) | (±0.11) | (±0.11) | (±0.11) | (±0.11) | (±0.15) | (±0.13) | (±0.12) | (±0.11) | (±0.11) | (±0.11) | (±0.23) | (±0.22) | (±0.21) | (±0.19) | (±0.18) | (±0.17) | |
U-Net3D-TwoLevel | 0.75 | 0.75 | 0.77 | 0.77 | 0.75 | 0.77 | 0.68 | 0.68 | 0.71 | 0.72 | 0.70 | 0.70 | 0.28 | 0.29 | 0.29 | 0.29 | 0.28 | 0.26 |
(±0.08) | (±0.09) | (±0.08) | (±0.07) | (±0.09) | (±0.09) | (±0.09) | (±0.09) | (±0.08) | (±0.07) | (±0.09) | (±0.09) | (±0.19) | (±0.21) | (±0.17) | (±0.15) | (±0.13) | (±0.11) | |
V-Net | 0.55 | 0.54 | 0.55 | 0.54 | 0.57 | 0.57 | 0.59 | 0.56 | 0.59 | 0.57 | 0.56 | 0.57 | 0.65 | 0.57 | 0.60 | 0.56 | 0.51 | 0.49 |
(±0.11) | (±0.13) | (±0.09) | (±0.09) | (±0.11) | (±0.16) | (±0.13) | (±0.12) | (±0.11) | (±0.10) | (±0.10) | (±0.11) | (±0.47) | (±0.41) | (±0.31) | (±0.25) | (±0.21) | (±0.17) | |
V-Net-TwoLevel | 0.50 | 0.52 | 0.50 | 0.49 | 0.53 | 0.51 | 0.48 | 0.49 | 0.50 | 0.50 | 0.48 | 0.48 | 0.46 | 0.48 | 0.48 | 0.49 | 0.44 | 0.41 |
(±0.11) | (±0.10) | (±0.07) | (±0.07) | (±0.11) | (±0.13) | (±0.12) | (±0.09) | (±0.07) | (±0.06) | (±0.07) | (±0.07) | (±0.33) | (±0.31) | (±0.23) | (±0.19) | (±0.15) | (±0.13) |
DSC | AOC | EAC | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lobe Frontal | Lobe Parietal | Lobe Temporal | Lobe Frontal | Lobe Parietal | Lobe Temporal | Lobe Frontal | Lobe Parietal | Lobe Temporal | ||||||||||
Right | Left | Right | Left | Right | Left | Right | Left | Right | Left | Right | Left | Right | Left | Right | Left | Right | Left | |
Variab. Inter-Observ. | 0.61 | 0.62 | 0.62 | 0.61 | 0.64 | 0.62 | 0.61 | 0.62 | 0.64 | 0.66 | 0.64 | 0.64 | 0.33 | 0.32 | 0.28 | 0.27 | 0.26 | 0.25 |
(±0.10) | (±0.09) | (±0.07) | (±0.10) | (±0.11) | (±0.11) | (±0.12) | (±0.10) | (±0.10) | (±0.10) | (±0.08) | (±0.07) | (±0.21) | (±0.21) | (±0.15) | (±0.13) | (±0.11) | (±0.09) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasini, E.; Genovesi, D.; Rossi, C.; De Santi, L.A.; Positano, V.; Giorgetti, A.; Santarelli, M.F. Convolution Neural Networks for the Automatic Segmentation of 18F-FDG PET Brain as an Aid to Alzheimer’s Disease Diagnosis. Electronics 2022, 11, 2260. https://doi.org/10.3390/electronics11142260
Pasini E, Genovesi D, Rossi C, De Santi LA, Positano V, Giorgetti A, Santarelli MF. Convolution Neural Networks for the Automatic Segmentation of 18F-FDG PET Brain as an Aid to Alzheimer’s Disease Diagnosis. Electronics. 2022; 11(14):2260. https://doi.org/10.3390/electronics11142260
Chicago/Turabian StylePasini, Elena, Dario Genovesi, Carlo Rossi, Lisa Anita De Santi, Vincenzo Positano, Assuero Giorgetti, and Maria Filomena Santarelli. 2022. "Convolution Neural Networks for the Automatic Segmentation of 18F-FDG PET Brain as an Aid to Alzheimer’s Disease Diagnosis" Electronics 11, no. 14: 2260. https://doi.org/10.3390/electronics11142260
APA StylePasini, E., Genovesi, D., Rossi, C., De Santi, L. A., Positano, V., Giorgetti, A., & Santarelli, M. F. (2022). Convolution Neural Networks for the Automatic Segmentation of 18F-FDG PET Brain as an Aid to Alzheimer’s Disease Diagnosis. Electronics, 11(14), 2260. https://doi.org/10.3390/electronics11142260