Household Electricity Consumer Classification Using Novel Clustering Approach, Review, and Case Study
Abstract
:1. Introduction
1.1. Motivation and Significance
1.2. Novelty and Contribution
- A novel methodology for optimal household consumer classifications is proposed.
- An expert classification is performed and new consumer classes are formed, and a two-stage indirect clustering model for optimal consumer classification is proposed.
- The energy consumption data set and the QS data set are analyzed to find the history and pattern of energy consumption of the consumer.
- The challenges, implications, and future directions in the household electricity consumption (HEC) study are addressed.
2. Related Work
3. Materials and Methods for Optimal Consumer Classification
3.1. Data Collection and Data Preparation
3.2. Proposed Methodology for OHCC
4. Results and Discussion
4.1. New Classes for Categorizating Household Consumers
4.2. Direct and Indirect Clustering Methods
4.3. Result Comparision within Expert Classification and Clustering Methods
4.4. Case Study
4.5. Threats to Validity for Classification Results
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ullah, F.U.M.; Ullah, A.; Haq, I.U.; Rho, S.; Baik, S.W. Short-term prediction of residential power energy consumption via CNN and multi-layer bi-directional LSTM networks. IEEE Access 2020, 8, 123369–123380. [Google Scholar] [CrossRef]
- Cai, H.; Shen, S.; Lin, Q.; Li, X.; Xiao, H. Predicting the energy consumption of residential buildings for regional electricity supply-side and demand-side management. IEEE Access 2019, 7, 30386–30397. [Google Scholar] [CrossRef]
- Ramnath, G.S.; Harikrishnan, R. Households electricity consumption analysis: A bibliometric approach. Libr. Philos. Pract. 2021, 5098, 1–21. Available online: https://digitalcommons.unl.edu/libphilprac/5098 (accessed on 24 April 2021).
- Pablo-Romero, M.D.P.; Pozo-Barajas, R.; Yñiguez, R. Global changes in residential energy consumption. Energy Policy 2017, 101, 342–352. [Google Scholar] [CrossRef]
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid, M.Z.A. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- Ozawa, A.; Kudoh, Y.; Yoshida, Y. A new method for household energy use modeling: A questionnaire-based approach. Energy Build. 2018, 162, 32–41. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Kang, C.; Zhang, M.; Wang, K.; Zhao, Y. Load profiling and its application to demand response: A review. Tsinghua Sci. Technol. 2015, 20, 2. [Google Scholar] [CrossRef]
- Rajabi, A.; Li, L.; Zhang, J.; Zhu, J.; Ghavidel, S.; Ghadi, M.J. A review on clustering of residential electricity customers and its application. In Proceedings of the 20th International Conference on Electrical Machines and Systems, Sydney, NSW, Australia, 11–14 August 2017. [Google Scholar] [CrossRef]
- Rhodes, J.D.; Cole, W.J.; Upshaw, C.R.; Edgar, T.F.; Webber, M.E. Clustering analysis of residential electricity demand profiles. Appl. Energy 2014, 135, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges. IEEE Trans. Smart Grid 2019, 10, 3125–3148. [Google Scholar] [CrossRef] [Green Version]
- Chicco, G.; Napoli, R.; Piglione, F. Comparisons Among Clustering Techniques for Electricity Customer Classification. IEEE Trans. Power Syst. 2006, 21, 933–940. [Google Scholar] [CrossRef]
- Chicco, G.; Napoli, R.; Piglione, F.; Postolache, P.; Scutariu, M.; Toader, C. Load pattern-based classification of electricity customers. IEEE Trans. Power Syst. 2004, 19, 1232–1239. [Google Scholar] [CrossRef]
- Chen, X.; Zanocco, C.; Flora, J.; Rajagopal, R. Constructing dynamic residential energy lifestyles using Latent Dirichlet Allocation. Appl. Energy 2022, 318, 119109. [Google Scholar] [CrossRef]
- Ramnath, G.S.; Harikrishnan, R. Social Welfare Maximization in Smart Grid: Review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1099, 012023. [Google Scholar] [CrossRef]
- Ramnath, G.S.; Harikrishnan, R. A Demand Response Program for Social Welfare Maximization in the Context of the Indian Smart Grid: A Review. In Cyber-Physical, IoT, and Autonomous Systems in Industry 4.0; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Yilmaz, S.; Chambers, J.; Patel, M. Comparison of clustering approaches for domestic electricity load profile characterisation-Implications for demand side management. Energy 2019, 180, 665–677. [Google Scholar] [CrossRef]
- Before the Maharashtra Electricity Regulatory Commission World Trade Center, 2020, 3, 1–752. Available online: https://www.mahadiscom.in/consumer/wp-content/uploads/2020/03/Order-322-of-2019.pdf (accessed on 26 June 2021).
- Jang, M.; Jeong, H.C.; Kim, T.; Suh, D.H. Empirical analysis of the impact of COVID-19 social distancing on residential electricity consumption based on demographic characteristics and load shape. Energies 2021, 14, 7523. [Google Scholar] [CrossRef]
- Ramnath, G.S.; Harikrishnan, R. A statistical and predictive modeling study to analyze impact of seasons and COVID-19 factors on household electricity consumption. J. Energy Syst. 2021, 5, 252–267. [Google Scholar] [CrossRef]
- Krarti, M.; Aldubyan, M. Review analysis of COVID-19 impact on electricity demand for residential buildings. Renew. Sustain. Energy Rev. 2021, 143, 110888. [Google Scholar] [CrossRef]
- Kumari, A.; Tanwar, S. A data analytics scheme for security-aware demand response management in smart grid system. In Proceedings of the IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Prayagraj, India, 27–29 November 2020. [Google Scholar] [CrossRef]
- Ali, M.; Prakash, K.; Macana, C.; Bashir, A.K.; Jolfaei, A.; Bokhari, A.; Klemeš, J.J.; Pota, H. Modeling residential electricity consumption from public demographic data for sustainable cities. Energies 2022, 15, 2163. [Google Scholar] [CrossRef]
- Yildiz, B.; Bilbao, J.I.; Dore, J.; Sproul, A. Household electricity load forecasting using historical smart meter data with clustering and classification techniques. In Proceedings of the IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Singapore, 22–25 May 2018; pp. 873–879. [Google Scholar] [CrossRef]
- Figueiredo, V.; Rodrigues, F.; Vale, Z.; Gouveia, J. An Electric Energy Consumer Characterization Framework Based on Data Mining Techniques. IEEE Trans. Power Syst. 2005, 20, 596–602. [Google Scholar] [CrossRef] [Green Version]
- Ramnath, G.S.; Harikrishnan, R. Problem-based learning on household electricity consumption analysis using predictive models and tools. Comput. Appl. Eng. Educ. 2022, 1–17. [Google Scholar] [CrossRef]
- Prahastono, I.; King, D.; Özveren, C.S. A Review of Electricity Load Profile Classification Methods. In Proceedings of the 42nd International Universities Power Engineering Conference, Brighton, UK, 4–6 September 2007; pp. 1187–1191. [Google Scholar]
- Zhou, K.-L.; Yang, S.-L.; Shen, C. A review of electric load classification in smart grid environment. Renew. Sustain. Energy Rev. 2013, 24, 103–110. [Google Scholar] [CrossRef]
- Singh, N.; Singh, D. Performance evaluation of k-means and hierarchal clustering in terms of accuracy and running time. Int. J. Comput. Sci. Inf. Technol. 2012, 3, 4119–4121. [Google Scholar]
- Chicco, G. Overview and performance assessment of the clustering methods for electrical load pattern grouping. Energy 2012, 42, 68–80. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, W.; Xu, R.; Black, J. A Cluster-Based Method for Calculating Baselines for Residential Loads. IEEE Trans. Smart Grid 2016, 7, 2368–2377. [Google Scholar] [CrossRef]
- Tanwar, S.; Kumari, A.; Vekaria, D.; Raboaca, M.S.; Alqahtani, F.; Tolba, A.; Neagu, B.-C.; Sharma, R. GrAb: A deep learning-based data-driven analytics scheme for energy theft detection. Sensors 2022, 22, 4048. [Google Scholar] [CrossRef]
- Tsekouras, G.J.; Hatziargyriou, N.D.; Dialynas, E.N. Two-stage pattern recognition of load curves for classification of electricity customers. IEEE Trans. Power Syst. 2007, 22, 1120–1128. [Google Scholar] [CrossRef]
- Chicco, G.; Napoli, R.; Postolache, P.; Scutariu, M.; Toader, C. Customer characterization options for improving the tariff offer. IEEE Trans. Power Syst. 2002, 22, 11. [Google Scholar] [CrossRef]
- Wijaya, T.K.; Vasirani, M.; Humeau, S.; Aberer, K. Cluster-based aggregate forecasting for residential electricity demand using smart meter data. In Proceedings of the IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November 2015; pp. 879–887. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, Z.; Lo, K.L. Two-stage fuzzy clustering approach for load profiling. In Proceedings of the 44th International Universities Power Engineering Conference (UPEC), Glasgow, UK, 1–4 September 2009. [Google Scholar]
- Teeraratkul, T.; O’Neill, D.; Lall, S. Shape-based approach to household electric load curve clustering and prediction. IEEE Trans. Smart Grid 2017, 9, 5. [Google Scholar] [CrossRef]
- Piao, M.; Shon, H.S.; Lee, J.Y.; Ryu, K.H. Subspace projection method based clustering analysis in load profiling. IEEE Trans. Power Syst. 2014, 29, 2628–2635. [Google Scholar] [CrossRef]
- Yang, J.; Ning, C.; Deb, C.; Zhang, F.; Cheong, D.; Lee, S.E.; Sekhar, C.; Tham, K.W. k-Shape clustering algorithm for building energy usage patterns analysis and forecasting model accuracy improvement. Energy Build. 2017, 146, 27–37. [Google Scholar] [CrossRef]
- Sun, M.; Konstantelos, I.; Strbac, G. C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data. IEEE Trans. Power Syst. 2017, 32, 2382–2393. [Google Scholar] [CrossRef] [Green Version]
- Al-Jarrah, O.Y.; Al-Hammadi, Y.; Yoo, P.D.; Muhaidat, S. Multi-Layered Clustering for Power Consumption Profiling in Smart Grids. IEEE Access 2017, 5, 18459–18468. [Google Scholar] [CrossRef]
- Xie, J.; Girshick, R.; Farhadi, A. Unsupervised deep embedding for clustering analysis. In Proceedings of the 33rd International Conference on Machine Learning (ICML-2016), New York, NY, USA, 5 February 2016; Volume 1, pp. 740–749. [Google Scholar]
- Lin, X.; Yu, H.; Wang, M.; Li, C.; Wang, Z.; Tang, Y. Electricity consumption forecast of high-rise office buildings based on the long short-term memory method. Energies 2021, 14, 4785. [Google Scholar] [CrossRef]
- Papageorgiou, G.; Efstathiades, A.; Poullou, M.; Ness, A.N. Managing household electricity consumption: A correlational, regression analysis. Int. J. Sustain. Energy 2020, 39, 1–11. [Google Scholar] [CrossRef]
- Wang, K.; Wang, B.; Peng, L. CVAP: Validation for cluster analyses. Data Sci. J. 2009, 8, 88–93. [Google Scholar] [CrossRef]
- Truing Up for FY 2019-20, Determination of ARR and Tariff for FY 2021–2022 for Uttar Gujarat Vij Company Limited (UGVCL) 2021. Available online: https://www.gercin.org (accessed on 10 September 2021).
- Tariff Structure for FY 2021’22 as Per Tariff Order Issued by Hon’ble PSERC Vide Its Order 2021, pp. 1–6. Available online: http://pserc.gov.in/pages/tariff-orders.html (accessed on 18 November 2021).
- Haryana Electricity Regulatory Commission, Distribution & Retail Supply Tariff Approved by the Commission for the, 2021 Notes: In Case of Arc Furnaces/Steel Rolling Mills for Supply at 33 kV and Above, the HT Industrial Tariff at the Corresponding 2021, p. 2. Available online: https://herc.gov.in/WriteReadData/Pdf/DR20210401.pdf (accessed on 26 November 2021).
- Karnataka_Tariff_Order_MESCOM Electricity Tariff Order 2021, Volume 314. Available online: https://bescom.karnataka.gov.in/storage/pdf-files/RA%20section/Tariff%20rates%20%20FY-2021-22.pdf (accessed on 21 November 2021).
- Electricity Regulatory Commission. Order on Tariff for Retail Sale of Electricity during 2021. Available online: https://www.apspdcl.in/pdf/Tariff%20Order%20for%20FY%202021-22.pdf (accessed on 16 December 2021).
- Demšar, J.; Curk, T.; Erjavec, A.; Gorup, Č.; Hočevar, T.; Milutinovič, M.; Možina, M.; Polajnar, M.; Toplak, M.; Starič, A.; et al. Orange: Data mining toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- Sanquist, T.F.; Orr, H.; Shui, B.; Bittner, A.C. Lifestyle factors in U.S. residential electricity consumption. Energy Policy 2012, 42, 354–364. [Google Scholar] [CrossRef]
- True Up for FY 2019-20 2019, APR for FY 2020–2021 and Revised ARR and Tariff for FY for Assam Power Distribution Company Limited (APDCL) 2021. Available online: http://www.aerc.gov.in/APDCL_Tariff_Order_2021_22.pdf (accessed on 23 August 2021).
- Christantonis, K.; Tjortjis, C. Data mining for smart cities: Predicting electricity consumption by classification. In Proceedings of the 10th International Conference on Information, Intelligence, Systems and Applications (IISA), Patras, Greece, 15–17 July 2019; pp. 1–7. [Google Scholar] [CrossRef]
Symbols | Description | Symbols | Description |
---|---|---|---|
DM | Data Mining | DRM | Demand Response Management |
QS | Questionnaire Survey | HEC | Household Electricity Consumption |
KM | K-Means | MEC | Monthly Energy Consumption |
H | Hierarchical | OHCC | Optimal Household Consumer Classification |
SOM | Self-Organizing Map | LEDH | Less Energy Demand House |
SG | Smart Grid | MEDH | Moderate Energy Demand House |
ML | Machine Learning | PEDH | Peak Energy Demand House |
FE | Feature Engineering | EPEDH | Extra Peak Energy Demand House |
kWh | Kilowatt-hour | DRP | Demand Response Program |
IEA | International Energy Agency | PCA | Principal Component Analysis |
NA | Not applicable | SVM | Support Vector Machine |
HID | Household Identity | C1 | Cluster 1 |
SS | Silhouette Score | C2 | Cluster 2 |
Avg_kWh | Average Energy Consumption in kWh | MSEDCL | Maharashtra State Electricity Distribution Company Limited |
Study | Objectives of the Study | Algorithms/Models Used | Type of Data Used | DM Techniques/Approaches Used | Applications |
---|---|---|---|---|---|
[7] |
|
|
|
|
|
[8] |
|
|
|
|
|
[9] |
|
|
|
|
|
[11] |
|
|
|
|
|
[12] |
|
|
|
|
|
[16] |
|
|
|
|
|
[24] |
|
|
|
|
|
[26] |
|
|
|
|
|
[27] |
|
|
|
|
|
[29] |
|
|
|
|
|
[30] |
|
|
|
|
|
Sr. No. | Factors | Total Variables | List of Variables |
---|---|---|---|
1 | Socio-demographic | 4 | Districts, Members, Monthly Family Income, Education |
2 | Household characteristics | 8 | HomeOwnership, CarpetArea, Rooms, Windows, Balconies, HomeLocation, DoorDirection, VentilationSun-lighting |
3 | Regular Appliances | 15 | TV, Refrigerator, TableFansNo, CelingFansNo, Mobiles, WaterHC, Mixer, WaterPurifier, LEDBulbNo, CFLBulbNo, T-shapedLampNo, FluorTubeNo, LEDTubeNo, OtheBulbsNo, Iron |
4 | Lifestyle Appliances | 30 | AC, Actemp, AircoolerNo, ExhaustFansNo, WashingMa, MobilePB, Laptop, Geyser, InductionCooktop, MWOven, LEDBulbNo, LEDBulbChrNo, LED0bulbNo, ZeroBulbNo, OtheBulbsNo, InteriorLighting, Inverter, Motor, Desktop, Dongle/Internet USB2, WifiRouter, HomeAS, ElectroGames, EV, ELCB, ToasterNo, SteamerNo, HairDreier, AlexaD, HomeSS |
5 | Other Factors | 08 | OutageType, VoltageFluctuation, VentilationSun-lighting, MajorAppliancesOff, TreeShade, WaterBodies, HID, 5YearOldNo |
Sr. No. | Variable Name | S-Value | p-Value | Sr. No. | Variable Name | S-Value | p-Value |
---|---|---|---|---|---|---|---|
1 | District | −0.199 | −0.214 | 13 | HomeSS | −0.011 | −0.071 |
2 | HomeLocation | −0.188 | −0.174 | 14 | AlexaD | −0.011 | −0.071 |
3 | VentilationSun-lighting | −0.148 | −0.209 | 15 | Iron | 0.002 | −0.055 |
4 | MajorAppliancesOff | −0.139 | −0.201 | 16 | WaterBodies | −0.091 | −0.098 |
5 | OutageType | −0.099 | −0.126 | 17 | Geyser* | −0.073 | 0.01 |
6 | DoorDirection | −0.088 | −0.011 | 18 | Education | −0.04 | 0.042 |
7 | HomeOwnership | −0.014 | −0.098 | 19 | Balconies | −0.029 | 0.057 |
8 | TableFansNo | −0.084 | −0.026 | 20 | CeilingFan* | −0.025 | −0.019 |
9 | OtheBulbsNo | −0.064 | −0.056 | 21 | FloreTube* | −0.017 | 0.012 |
10 | AC* | −0.059 | 0.055 | 22 | Refrigerator* | −0.009 | 0.052 |
11 | LEDLamp* | −0.026 | 0.038 | 23 | VoltageFluctuation | −0.005 | 0.052 |
12 | WashingMac* | −0.017 | 0.084 |
Sr. No. | State Regulatory Commission | Consumer Category | Consumption Slabs (kWh) | |
---|---|---|---|---|
1 | Maharashtra Electricity Regulatory Commission (MERC), Maharashtra | LT I (A)—Residential—Below Poverty Line (BPL) | 0–30 | |
LT I (B)—Residential (Non-BPL) | 0–100 (+100) 101–300 (+200) | 301–500 (+200) 501 and above | ||
2 | Gujrat Electricity Regulatory Commission (GERC), Gujrat | Urban & Rural—Residential Group (A): BPL consumers | 0–50 | |
Urban & Rural—Residential Group (B): Other than BPL consumers | Existing slabs 0–50 (+50) 50–100 (+50) 100–250 (+150) 250 and above | Proposed slabs 0–50 (+50) 50–200 (+150) 200–350 (+150) 350 and above | ||
3 | Punjab Electricity Regulatory Commission (PERC) Punjab | Domestic consumer category using consumption slabs | 0–100 (+100) 101–300 (+200) | Above 300 |
4 | Haryana Electricity Regulatory Commission (HERC) Haryana | Domestic supply, Category I: Total consumption up to 100 units per month | 0–50 (+50) 51–100 (+50) | |
Domestic supply, Category II: Total consumption more than 100 units per month and up to 800 units per month | 0–150 (+150) 151–250 (+100) 251–500 (+250) | 501–800 801 and above | ||
5 | Karnataka Electricity Regulatory Commission (KERC) Karnataka | Tariff Schedule, LT-1: Under Bhagya Jyoti and Kutira Jyoti Schemes | 0–40 units | |
LT-2(a) (i-Urban) (ii-Rural): Applicable to Areas under Village Panchayats | 0–50 (+50) 51–100 (+50) | 101–200 (+100) Above 200 units | ||
6 | Andra-Pradesh Electricity Regulatory Commission (APERC) Andra-Pradesh | Domestic-LT-I (3 Groups: A, B & C) | Group A: 0–75 (Telescopic) 0–50 & 51–75 Group B: 76–225 0–50 51–100 101–200 & 201–225 | Group C: Above 225 0–50 & 51–100 101–200 201–300 301–400 401–500 & + 500 |
7 | Assam Electricity Regulatory Commission (AERC) Assam | LT Category-I: (Below 0.5 kW) Jeevan Dhara | 0–30 | |
LT Category-II: (0.5–5 kW) & LT Category-III: (5–25 kW): Domestic A & B | 0–120 121–240 Above 240 |
Group No. | Class Name | Class Range (kWh) | No. of Consumers |
---|---|---|---|
1 | LEDH | 0 to 60 | 38 |
2 | MEDH | 61 to 120 | 95 |
3 | PEDH | 121 to 280 | 86 |
4 | EPEDH | Above 280 | 06 |
Parameters | SS Mean | Avg_kWh | Avg_kWh (S) | Influencing QS Variables | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TV* | E | G | TV | EG | ZB | CF | ||||
Min | 0.53 | 0 | 65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Max | 0.63 | 181 | 88 | 6 | 2 | 2 | 2 | 2 | 3 | 6 |
Mean | 0.6 | 89 | 79 | 3.7 | 0.8 | 0.3 | 1 | 0 | 0.2 | 2.5 |
Median | 0.6 | 87 | 79 | 4 | 1 | 0 | 1 | 0 | 0 | 3 |
Mn-Md | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 |
Parameters | SS Mean | Avg_kWh | Avg_kWh (S) | Influencing QS Variables | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R | EF | 5O | G | WP | TV | CF | ||||
Min | 0.44 | 103 | 138 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |
Max | 0.51 | 279 | 191 | 9 | 3 | 12 | 3 | 3 | 3 | 7 |
Mean | 0.41 | 186 | 157 | 2 | 0.55 | 5.1 | 0.6 | 0.8 | 1.1 | 3.5 |
Median | 0.46 | 186 | 150 | 1 | 0 | 5 | 0 | 1 | 1 | 3 |
Mn-Md | 0 | 0 | 3 | 1 | 0.55 | 0 | 0.61 | 0 | 0 | 0.52 |
Parameters | SS Mean | Avg_kWh | Avg_kWh (S) | Influencing QS Variables | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TV* | E | G | TV | EG | ZB | CF | ||||
Min | 0.44 | 182 | 148 | 0 | 0 | 0 | 1 | 0 | 0 | 2 |
Max | 0.51 | 279 | 187 | 6 | 2 | 3 | 3 | 1 | 6 | 7 |
Mean | 0.47 | 185 | 169 | 3.6 | 0.9 | 0.6 | 1.1 | 0.1 | 3.6 | 3.5 |
Median | 0.46 | 184 | 168 | 4 | 1 | 0 | 1 | 0 | 4 | 6 |
Mn-Md | 0 | 1 | 1 | 0 | 0 | 0.6 | 0 | 0 | 0 | −2.5 |
Parameters | SS Mean | Avg_kWh | Avg_kWh (S) | Influencing QS Variables | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TV | R | CF | WP | EF | G | 5O | ||||
Min | 0.53 | 0 | 65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Max | 0.63 | 181 | 97 | 2 | 4 | 6 | 3 | 3 | 2 | 13 |
Mean | 0.60 | 88 | 76 | 1.0 | 1.3 | 2.5 | 0.4 | 0.1 | 0.3 | 3.4 |
Median | 0.60 | 87 | 74 | 1 | 2 | 3 | 0 | 0 | 0 | 3 |
Mn-Md | 0 | 1 | 2 | 0 | −0.7 | 0 | 0 | 0 | 0 | 0 |
Clustering Methods | Sr. No. | Parameters | KM | Hierarchical | SOM |
---|---|---|---|---|---|
Direct clustering method | 1 | Total Samples | 225 | 225 | 225 |
2 | No. of clusters | 03 | 05 | 05 | |
3 | No. of outlier clusters | 00 | 01 | 01 | |
4 | Total outlier samples | 06 | 09 | 11 | |
5 | Min (kWh) Mean | 60 | 56 | 13 | |
6 | Max (kWh) Mean | 221 | 223 | 225 | |
7 | Avg (kWh) Mean (Mn) | 141 | 128 | 106 | |
8 | Avg (kWh) Median (Md) | 141 | 130 | 94 | |
9 | Avg(kWh) Md-Mn Mean | 0 | +2 | −12 | |
10 | SS Mean | 0.522 | 0.027 | −0.054 | |
11 | SS Median | 0.527 | 0.069 | 0.011 | |
12 | Overlap-free samples | 0% | 0% | 0% | |
Indirect clustering method: 1st stage | 1 | Total Samples | 225 | 225 | 225 |
2 | No. of clusters | 02 | 03 | 05 | |
3 | No. of outlier clusters | 00 | 01 | 01 | |
4 | Total outlier samples | 30 | 08 | 44 | |
5 | Min (kWh) Mean | 51 | 42 | 32 | |
6 | Max (kWh) Mean | 230 | 239 | 169 | |
7 | Avg (kWh) Mean (Mn) | 137 | 135 | 96 | |
8 | Avg (kWh) Median (Md) | 136 | 136 | 92 | |
9 | Avg(kWh) Md-Mn Mean | −1 | +1 | −4 | |
10 | SS Mean | 0.505 | 0.295 | 0.196 | |
11 | SS Median | 0.531 | 0.403 | 0.222 | |
12 | Overlap-free samples | 87% | 82% | 0% | |
Indirect clustering method: 2nd stage | 1 | Total Samples | NA | 225 | 225 |
2 | No. of Clusters | 03 | 02 | ||
3 | No. of outlier clusters | 01 | 00 | ||
4 | Total outlier samples | 08 | 33 | ||
5 | Min (kWh) Mean | 51 | 51 | ||
6 | Max (kWh) Mean | 222 | 230 | ||
7 | Avg (kWh) Mean (Mn) | 131 | 136 | ||
8 | Avg (kWh) Median (Md) | 129 | 135 | ||
9 | Avg(kWh) Md-Mn Mean | −2 | −1 | ||
10 | SS Mean | 0.531 | 0.532 | ||
11 | SS Median | 0.530 | 0.531 | ||
12 | Overlap-free samples | 83% | 88% |
Sr. No. | CN | CR (kWh) | MC (kWh) | CV (kWh) | PCA |
---|---|---|---|---|---|
1 | LEDH | 0 to 60 | 38 | 37 | C2 |
2 | MEDH | 61 to 120 | 95 | 92 | C2 |
3 | PEDH | 121 to 280 | 86 | 63 | C1 + C2 |
4 | EPEDH | Above 280 | 06 | 07 | Expert |
Overlapping | 00 | 26 | |||
Total | 225 | 225 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramnath, G.S.; R., H.; Muyeen, S.M.; Kotecha, K. Household Electricity Consumer Classification Using Novel Clustering Approach, Review, and Case Study. Electronics 2022, 11, 2302. https://doi.org/10.3390/electronics11152302
Ramnath GS, R. H, Muyeen SM, Kotecha K. Household Electricity Consumer Classification Using Novel Clustering Approach, Review, and Case Study. Electronics. 2022; 11(15):2302. https://doi.org/10.3390/electronics11152302
Chicago/Turabian StyleRamnath, Gaikwad Sachin, Harikrishnan R., S. M. Muyeen, and Ketan Kotecha. 2022. "Household Electricity Consumer Classification Using Novel Clustering Approach, Review, and Case Study" Electronics 11, no. 15: 2302. https://doi.org/10.3390/electronics11152302
APA StyleRamnath, G. S., R., H., Muyeen, S. M., & Kotecha, K. (2022). Household Electricity Consumer Classification Using Novel Clustering Approach, Review, and Case Study. Electronics, 11(15), 2302. https://doi.org/10.3390/electronics11152302