Singularity-Free Fixed-Time Adaptive Control with Dynamic Surface for Strict-Feedback Nonlinear Systems with Input Hysteresis
Abstract
:1. Introduction
1.1. Contribution
- In this paper, fixed-time dynamic surface control is presented, where extra nonlinear terms are introduced in the first-order filters to improve the filter error convergence speed. Meanwhile, the adaptive laws can also ensure the fixed-time property of parameter approximation errors, and the singularity problem of the controller is avoided.
- The input hysteresis is considered in this paper and dealt with by introducing a compensation filter, which can compensate for the loss from the input hysteresis.
1.2. Structure
2. Preliminary Knowledge
3. Problem Formulation
4. Fixed-Time Adaptive Controller Design with Novel DSC filters and Stability Analysis
4.1. Adaptive Backstepping-Based Controller Design
4.1.1. Step 1
4.1.2. Step
4.1.3. Step n
4.2. Stability Analysis
4.2.1. Step 1
4.2.2. Step
4.2.3. Step n
5. Simulation Results
5.1. Example 1
5.2. Example 2: Circuit System
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alattas, K.A.; Mobayen, S.; Din, S.U.; Asad, J.H.; Fekih, A.; Assawinchaichote, W.; Vu, M.T. Design of a Non-Singular Adaptive Integral-Type Finite Time Tracking Control for Nonlinear Systems With External Disturbances. IEEE Access 2021, 9, 102091–102103. [Google Scholar] [CrossRef]
- Mofid, O.; Amirkhani, S.; ud Din, S.; Mobayen, S.; Vu, M.T.; Assawinchaichote, W. Finite-time convergence of perturbed nonlinear systems using adaptive barrier-function nonsingular sliding mode control with experimental validation. J. Vib. Control 2022. [Google Scholar] [CrossRef]
- Dastres, H.; Rezaie, B.; Baigzadehnoe, B. Neural-network-based adaptive backstepping control for a class of unknown nonlinear time-delay systems with unknown input saturation. Neurocomputing 2020, 398, 131–152. [Google Scholar]
- Kchaou, M.; Gassara, H.; El-Hajjaji, A. Adaptive sliding mode control for fuzzy singular systems with time delay and input nonlinearity. Int. J. Adapt. Control Signal Process. 2018, 32, 464–479. [Google Scholar]
- Thanh, H.L.N.N.; Vu, M.T.; Mung, N.X.; Nguyen, N.P.; Phuong, N.T. Perturbation Observer-Based Robust Control Using a Multiple Sliding Surfaces for Nonlinear Systems with Influences of Matched and Unmatched Uncertainties. Mathematics 2020, 8, 1371. [Google Scholar]
- Alattas, K.A.; Vu, M.T.; Mofid, O.; El-Sousy, F.F.M.; Alanazi, A.K.; Awrejcewicz, J.; Mobayen, S. Adaptive Nonsingular Terminal Sliding Mode Control for Performance Improvement of Perturbed Nonlinear Systems. Mathematics 2022, 10, 1064. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, W.; Modares, H.; Xu, C.Z. Robust Actor–Critic Learning for Continuous-Time Nonlinear Systems With Unmodeled Dynamics. IEEE Trans. Fuzzy Syst. 2022, 30, 2101–2112. [Google Scholar] [CrossRef]
- Yang, Y.; Vamvoudakis, K.G.; Modares, H.; Yin, Y.; Wunsch, D.C. Hamiltonian-Driven Hybrid Adaptive Dynamic Programming. IEEE Trans. Syst. Man, Cybern. Syst. 2021, 51, 6423–6434. [Google Scholar] [CrossRef]
- Yang, Y.; Modares, H.; Vamvoudakis, K.G.; He, W.; Xu, C.Z.; Wunsch, D.C. Hamiltonian-Driven Adaptive Dynamic Programming with Approximation Errors. IEEE Trans. Cybern. 2021. early access. [Google Scholar] [CrossRef]
- Ghaffari, V.; Mobayen, S.; ud Din, S.; Rojsiraphisal, T.; Vu, M.T. Robust tracking composite nonlinear feedback controller design for time-delay uncertain systems in the presence of input saturation. ISA Trans. 2022, in press. [Google Scholar]
- Yang, Y.; Tang, L.; Zou, W.; Guo, J.; Ahn, C.K. Dynamic Event-Triggered Design with Fixed-Time Performance and Input Dead-Zone. IEEE Trans. Circuits Syst. II Express Briefs 2022. early access. [Google Scholar] [CrossRef]
- Li, H.; Huang, C.G.; Guedes Soares, C. A real-time inspection and opportunistic maintenance strategies for floating offshore wind turbines. Ocean Eng. 2022, 256, 111433. [Google Scholar] [CrossRef]
- Li, H.; Díaz, H.; Guedes Soares, C. A failure analysis of floating offshore wind turbines using AHP-FMEA methodology. Ocean Eng. 2021, 234, 109261. [Google Scholar] [CrossRef]
- Li, H.; Guedes Soares, C.; Huang, H.Z. Reliability analysis of a floating offshore wind turbine using Bayesian Networks. Ocean Eng. 2020, 217, 107827. [Google Scholar]
- Zheng, X.; Yang, X. Improved adaptive NN backstepping control design for a perturbed PVTOL aircraft. Neurocomputing 2020, 410, 51–60. [Google Scholar]
- Yang, Y.; Modares, H.; Vamvoudakis, K.G.; Yin, Y.; Wunsch, D.C. Dynamic Intermittent Feedback Design for H∞ Containment Control on a Directed Graph. IEEE Trans. Cybern. 2020, 50, 3752–3765. [Google Scholar]
- Zou, W.; Shi, P.; Xiang, Z.; Shi, Y. Finite-Time Consensus of Second-Order Switched Nonlinear Multi-Agent Systems. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 1757–1762. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, C.Z. Adaptive Fuzzy Leader–Follower Synchronization of Constrained Heterogeneous Multiagent Systems. IEEE Trans. Fuzzy Syst. 2022, 30, 205–219. [Google Scholar]
- Rojsiraphisal, T.; Mobayen, S.; Asad, J.H.; Vu, M.T.; Chang, A.; Puangmalai, J. Fast Terminal Sliding Control of Underactuated Robotic Systems Based on Disturbance Observer with Experimental Validation. Mathematics 2021, 9, 1935. [Google Scholar] [CrossRef]
- Wang, D.; Huang, J. Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 2005, 16, 195–202. [Google Scholar]
- Zhou, Q.; Wu, C.; Jing, X.; Wang, L. Adaptive fuzzy backstepping dynamic surface control for nonlinear Input-delay systems. Neurocomputing 2016, 199, 58–65. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Zhao, Q.; Li, J.; Wu, Z.G. Adaptive Neural Dynamic Surface Control with Prespecified Tracking Accuracy of Uncertain Stochastic Nonstrict-Feedback Systems. IEEE Trans. Cybern. 2022, 52, 3408–3421. [Google Scholar] [CrossRef]
- Zhang, T.; Xia, M.; Yi, Y.; Shen, Q. Adaptive Neural Dynamic Surface Control of Pure-Feedback Nonlinear Systems with Full State Constraints and Dynamic Uncertainties. IEEE Trans. Syst. Man, Cybern. Syst. 2017, 47, 2378–2387. [Google Scholar] [CrossRef]
- Charfeddine, S.; Boudjemline, A.; Ben Aoun, S.; Jerbi, H.; Kchaou, M.; Alshammari, O.; Elleuch, Z.; Abbassi, R. Design of a Fuzzy Optimization Control Structure for Nonlinear Systems: A Disturbance-Rejection Method. Appl. Sci. 2021, 11, 2612. [Google Scholar] [CrossRef]
- Zhu, Z.; Xia, Y.; Fu, M. Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust Nonlinear Control 2011, 21, 686–702. [Google Scholar] [CrossRef]
- Polyakov, A. Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems. IEEE Trans. Autom. Control 2012, 57, 2106–2110. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.; Ahn, C.K.; Liu, L.; Liu, C. Prescribed performance fixed-time recurrent neural network control for uncertain nonlinear systems. Neurocomputing 2019, 363, 351–365. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.X.; Hou, Z. Event-Triggered Fuzzy Adaptive Fixed-Time Tracking Control for Nonlinear Systems. IEEE Trans. Cybern. 2022, 52, 7206–7217. [Google Scholar] [CrossRef]
- Sun, J.; Pu, Z.; Yi, J.; Liu, Z. Fixed-Time Control With Uncertainty and Measurement Noise Suppression for Hypersonic Vehicles via Augmented Sliding Mode Observers. IEEE Trans. Ind. Inform. 2020, 16, 1192–1203. [Google Scholar] [CrossRef]
- Wang, L.; Chen, C.L.P.; Li, H. Event-Triggered Adaptive Control of Saturated Nonlinear Systems with Time-Varying Partial State Constraints. IEEE Trans. Cybern. 2020, 50, 1485–1497. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, H.; Wu, C.; Wang, L.; Ahn, C.K. Adaptive Fuzzy Control of Nonlinear Systems with Unmodeled Dynamics and Input Saturation Using Small-Gain Approach. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 1979–1989. [Google Scholar] [CrossRef]
- Min, H.; Xu, S.; Ma, Q.; Zhang, B.; Zhang, Z. Composite-Observer-Based Output-Feedback Control for Nonlinear Time-Delay Systems With Input Saturation and Its Application. IEEE Trans. Ind. Electron. 2018, 65, 5856–5863. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Zhou, Q.; Lu, R. Adaptive Fuzzy Control for Nonstrict Feedback Systems with Unmodeled Dynamics and Fuzzy Dead Zone via Output Feedback. IEEE Trans. Cybern. 2017, 47, 2400–2412. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, G.H. Adaptive Fuzzy Prescribed Performance Control of Nonlinear Systems with Hysteretic Actuator Nonlinearity and Faults. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 2349–2358. [Google Scholar] [CrossRef]
- Liu, Z.; Lai, G.; Zhang, Y.; Chen, X.; Chen, C.L.P. Adaptive Neural Control for a Class of Nonlinear Time-Varying Delay Systems with Unknown Hysteresis. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 2129–2140. [Google Scholar]
- Sanner, R.M.; Slotine, J.J.E. Gaussian networks for direct adaptive control. IEEE Trans. Neural Netw. 1992, 3, 837–863. [Google Scholar] [CrossRef]
- Wang, F.; Lai, G. Fixed-time control design for nonlinear uncertain systems via adaptive method. Syst. Control Lett. 2020, 140, 104704. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- Zhou, Z.; Tong, D.; Chen, Q.; Zhou, W.; Xu, Y. Adaptive NN control for nonlinear systems with uncertainty based on dynamic surface control. Neurocomputing 2021, 421, 161–172. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Chen, J.; Niu, T. Singularity-Free Fixed-Time Adaptive Control with Dynamic Surface for Strict-Feedback Nonlinear Systems with Input Hysteresis. Electronics 2022, 11, 2378. https://doi.org/10.3390/electronics11152378
Feng X, Chen J, Niu T. Singularity-Free Fixed-Time Adaptive Control with Dynamic Surface for Strict-Feedback Nonlinear Systems with Input Hysteresis. Electronics. 2022; 11(15):2378. https://doi.org/10.3390/electronics11152378
Chicago/Turabian StyleFeng, Xuxiang, Jun Chen, and Tongyao Niu. 2022. "Singularity-Free Fixed-Time Adaptive Control with Dynamic Surface for Strict-Feedback Nonlinear Systems with Input Hysteresis" Electronics 11, no. 15: 2378. https://doi.org/10.3390/electronics11152378
APA StyleFeng, X., Chen, J., & Niu, T. (2022). Singularity-Free Fixed-Time Adaptive Control with Dynamic Surface for Strict-Feedback Nonlinear Systems with Input Hysteresis. Electronics, 11(15), 2378. https://doi.org/10.3390/electronics11152378