A Hybrid SEM-Neural Network Modeling of Quality of M-Commerce Services under the Impact of the COVID-19 Pandemic
Abstract
:1. Introduction
2. Theoretical Background and Hypotheses Development
2.1. M-Commerce Apps
2.2. Customer Support for the M-Commerce
2.3. Security and Privacy in M-Commerce
2.4. Fulfillment of the M-Commerce
2.5. M-Commerce Service Quality and Customer Satisfaction
2.6. Customer Trust and Loyalty
2.7. Conceptual Model Development
3. Methodology
3.1. Data Collection and Sample Characteristics
3.2. SEM–ANN Data Analysis
3.2.1. Structural Equation Modeling
3.2.2. ANN
4. Empirical Findings and Discussion
4.1. Reliability and Validity Analysis
4.2. Model Fitting
4.3. Analysis of Direct and Mediation Effects
- MQ has a mediating effect on CS through the four exogenous latent variables: DC (β = 0.254; p < 0.05), CP (β = 0.156; p < 0.05), SP (β = 0.344; p < 0.05), and FF (β = 0.448; p < 0.05);
- MQ has a mediating effect on CT through the four exogenous latent variables DC (β = 0.234; p < 0.05), CP (β = 0.144; p < 0.05), SP (β = 0.318; p < 0.05), and FF (β = 0.414; p < 0.05);
- MQ has a mediating effect on CL through the four exogenous latent variables DC (β = 0.231; p < 0.05), CP (β = 0.142; p < 0.05), SP (β = 0.313; p < 0.05), and FF (β = 0.409; p < 0.05), which generates an indirect positive impact on CS, CT, and CL;
- CS and CT, respectively, mediate the effect between MQ and CL (β = 0.859; p < 0.05).
4.4. Artificial Neural Network Analyses
5. Conclusions
5.1. Theoretical Implications
5.2. Practical Implications
5.3. Limitations and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donthu, N.; Gustafsson, A. Effects of COVID-19 on Business and Research. J. Bus. Res. 2020, 117, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Sheth, J. Business of business is more than business: Managing during the Covid crisis. Ind. Mark. Manag. 2020, 88, 261–264. [Google Scholar] [CrossRef]
- Mangiò, F.; Pedeliento, G.; Andreini, D. Branding rhetoric in times of a global pandemic: A text-mining analysis. J. Advert. 2021, 50, 240–252. [Google Scholar] [CrossRef]
- Soto-Acosta, P. COVID-19 Pandemic: Shifting Digital Transformation to a High-Speed Gear. Inf. Syst. Manag. 2020, 37, 260–266. [Google Scholar] [CrossRef]
- Eger, L.; Komarkova, L.; Egerova, D.; Micik, M. The effect of COVID-19 on consumer shopping behaviour: Generational cohort perspective. J. Retail. Consum. Serv. 2021, 61, 102542. [Google Scholar] [CrossRef]
- Zwanka, R.J.; Buf, C. COVID-19 generation: A conceptual framework of the consumer behavioral shifts to be caused by the COVID-19 pandemic. J. Int. Consum. Mark. 2021, 33, 58–67. [Google Scholar] [CrossRef]
- Gao, X.; Shi, X.; Guo, H.; Liu, Y. To buy or not buy food online: The impact of the COVID-19 epidemic on the adoption of e-commerce in China. PLoS ONE 2020, 15, e0237900. [Google Scholar] [CrossRef]
- Bhatti, A.; Akram, H.; Basit, M.; Khan, U.; Syeda, N.; Bilal, M. E-commerce trends during COVID-19 Pandemic. Int. J. Future Gener. Commun. Netw. 2020, 13, 1449–1452. [Google Scholar]
- Belvedere, V.; Martinelli, E.M.; Tunisini, A. Getting the most from E-commerce in the context of omnichannel strategies. Ital. J. Mark. 2021, 331–349. [Google Scholar] [CrossRef]
- Peráček, T. E-commerce and its limits in the context of consumer protection: The case of the Slovak Republic. Jurid. Trib. 2022, 12, 35–50. [Google Scholar] [CrossRef]
- Savrul, M.; Kılıç, C. E-Commerce as an Alternative Strategy in Recovery from the Recession. Procedia Soc. Behav. Sci. 2011, 24, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Coelho, L.D.S.; Oliveira, R.C.; Alméri, T.M. O crescimento do e-commerce e os problemas que o acompanham: A identificação da oportunidade de melhoria em uma rede de comercio eletrônico na visão do cliente. Rev. Adm. Cent. Univ. Sales. São Paulo—UNISAL 2013, 3, 63–85. [Google Scholar]
- Hajli, M.N. A study of the impact of social media on consumers. Int. J. Mark. Res. 2014, 56, 387–404. [Google Scholar] [CrossRef] [Green Version]
- Fouskas, K.; Pachni-Tsitiridou, O.; Chatziharistou, C. A Systematic Literature Review on E-Commerce Success Factors. In Strategic Innovative Marketing and Tourism; Kavoura, A., Kefallonitis, E., Theodoridis, P., Eds.; Springer: Cham, Switzerland, 2020; pp. 687–694. [Google Scholar] [CrossRef]
- Pantelimon, F.; Georgescu, T.; Posedaru, B. The impact of mobile e-commerce on GDP: A comparative analysis between Romania and Germany and how COVID-19 influences the ecommerce activity worldwide. Inform. Econ. 2020, 24, 27–41. [Google Scholar] [CrossRef]
- Njenga, A.K.; Litondo, K.; Omwansa, T. A Theoretical Review of Mobile Commerce Success Determinants. J. Inf. Eng. Appl. 2016, 6, 13–23. [Google Scholar] [CrossRef]
- Chau, N.T.; Deng, H. Critical Determinants for Mobile Commerce Adoption in Vietnamese SMEs: A Conceptual Framework. Procedia Comput. Sci. 2018, 138, 433–440. [Google Scholar] [CrossRef]
- Tran, L.T.T. Managing the effectiveness of e-commerce platforms in a pandemic. J. Retail. Consum. Serv. 2021, 58, 102287. [Google Scholar] [CrossRef]
- Baldwin, R.; Tomiura, E. Thinking ahead about the trade impact of COVID-19. In Economics in the Time of COVID-19; Baldwin, R., di Mauro, B.W., Eds.; Centre for Economic Policy Research: London, UK, 2020; pp. 59–71. Available online: https://www.econbiz.de/Record/thinking-ahead-about-the-trade-impact-of-covid-19-baldwin-richard/10012202286 (accessed on 12 May 2022).
- Watanabe, T.; Omori, Y. Online consumption during the COVID-19 crisis: Evidence from Japan. Covid Econ. 2020, 32, 208–241. [Google Scholar] [CrossRef]
- Sardjono, W.; Selviyanti, E.; Mukhlis, M.; Tohir, M. Global issues: Utilization of e-commerce and increased use of mobile commerce application as a result of the COVID-19 pandemic. J. Phys. Conf. Ser. 2021, 1832, 012024. [Google Scholar] [CrossRef]
- Andrienko, O. Ecommerce & Consumer Trends During Coronavirus. 2020. Available online: https://www.semrush.com/blog/ecommerce-covid-19/ (accessed on 11 June 2022).
- Dannenberg, P.; Fuchs, M.; Riedler, T.; Wiedemann, C. Digital transition by COVID-19 pandemic? The German food online retail. Tijdschr. Econ. Soc. Geogr. 2020, 111, 543–560. [Google Scholar] [CrossRef]
- Grashuis, J.; Skevas, T.; Segovia, M.S. Grocery shopping preferences during the COVID-19 pandemic. Sustainability 2020, 12, 5369. [Google Scholar] [CrossRef]
- Sernicola, F.; Maltese, I.; Gatta, V.; Iannaccone, G.; Marcucci, E. Impatto del lockdown sulla spesa degli italiani: Quale futuro per l’e-grocery? REPoT-Riv. Econ. Politica Trasp. 2020, 3, 1–13. [Google Scholar]
- Asti, W.P.; Handayani, P.W.; Azzahro, F. Influence of trust, perceived value, and attitude on customers’ repurchase intention for e-grocery. J. Food Prod. Mark. 2021, 27, 157–171. [Google Scholar] [CrossRef]
- Kim, S.S. Purchase Intention in the Online Open Market: Do Concerns for E-Commerce Really Matter? Sustainability 2020, 12, 773. [Google Scholar] [CrossRef] [Green Version]
- Veeragandham, M.; Patnaik, N.; Tiruvaipati, R.; Guruprasad, M. Consumer buying behavior towards E-Commerce during COVID-19. Int. J. Res. Eng. Sci. Manag. 2020, 3, 78–82. [Google Scholar] [CrossRef]
- Salem, M.A.; Nor, K.M. The effect of COVID-19 on consumer behaviour in Saudi Arabia: Switching from brick and mortar stores to E-Commerce. Int. J. Sci. Technol. Res. 2020, 9, 15–28. [Google Scholar]
- Anwar, A.; Thongpapanl, N.; Ashraf, A.R. Strategic imperatives of mobile commerce in developing countries: The influence of consumer innovativeness, ubiquity, perceived value, risk, and cost on usage. J. Strateg. Mark. 2020, 6, 722–742. [Google Scholar] [CrossRef]
- Ecommerce Europe. 2021 European E-Commerce Report. Available online: https://ecommerce-europe.eu/wp-content/uploads/2021/09/2021-European-E-commerce-Report-LIGHT-VERSION.pdf (accessed on 3 March 2022).
- Dumanska, I.; Hrytsyna, L.; Kharun, O.; Matviiets, O. E-commerce and M-commerce as Global Trends of International Trade Caused by the COVID-19 Pandemic. WSEAS Trans. Environ. Dev. 2021, 17, 386–397. [Google Scholar] [CrossRef]
- Sanz, L.F.; Pérez, J.G.; Martinez, C.A.; Misra, S. Analysis of Mobile Commerce in the SMEs of the European Union. Tech. Gaz. 2020, 27, 2062–2071. [Google Scholar] [CrossRef]
- Alaimo, L.S.; Fiore, M.; Galati, A. How the COVID-19 Pandemic Is Changing Online Food Shopping Human Behaviour in Italy. Sustainability 2020, 12, 9594. [Google Scholar] [CrossRef]
- Kalinić, Z.; Marinković, V.; Kalinić, L.; Liébana-Cabanillas, F. Neural network modeling of consumer satisfaction in mobile commerce: An empirical analysis. Expert Syst. Appl. 2021, 175, 114803. [Google Scholar] [CrossRef]
- Marinao-Artigas, E.; Barajas-Portas, K. Precedents of the satisfaction of mobile shoppers. A cross-country analysis. Electron. Commer. Res. Appl. 2020, 39, 100919. [Google Scholar] [CrossRef]
- Chehabeddine, M.; Tvaronavičienė, M. Securing regional development. Insights Into Reg. Dev. 2020, 2, 430–442. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, H.; Dwivedi, Y. A Hybrid SEM-Neural Network Model for Predicting Determinants of Mobile Payment Services. Inf. Syst. Manag. 2020, 36, 243–261. [Google Scholar] [CrossRef]
- Marinković, V.; Đorđević, A.; Kalinić, Z. The moderating effects of gender on customer satisfaction and continuance intention in mobile commerce: A UTAUT-based perspective. Technol. Anal. Strateg. Manag. 2020, 32, 306–318. [Google Scholar] [CrossRef]
- Rita, P.; Oliveira, T.; Farisa, A. The impact of e-service quality and customer satisfaction on customer behavior in online shopping. Heliyon 2019, 5, e02690. [Google Scholar] [CrossRef] [Green Version]
- Chopdar, P.K.; Balakrishnan, J. Consumers response towards mobile commerce applications: S-O-R approach. Int. J. Inf. Manag. 2020, 53, 102106. [Google Scholar] [CrossRef]
- Bhati, N.S. Validation of Customers’ Perceived E-Service Quality Determinants: A Study of Online Shoppers. In Proceedings of the International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur, India, 26–28 February 2019. [Google Scholar] [CrossRef]
- Omar, S.; Mohsen, K.; Tsimonis, G.; Oozeerally, A.; Hsu, J.H. M-commerce: The nexus between mobile shopping service quality and loyalty. J. Retail. Consum. Serv. 2021, 60, 102468. [Google Scholar] [CrossRef]
- Hasanat, M.W.; Hoque, A.; Shikha, F.A.; Anwar, M.; Hamid, A.B.A.; Tat, H.H. The impact of coronavirus (COVID-19) on E-Business in Malaysia. Asian J. Multidiscip. Stud. 2020, 3, 52–58. [Google Scholar]
- 99firms Statistics–Ecommerce Statistics. Available online: https://99firms.com/blog/ecommerce-statistics/ (accessed on 3 March 2022).
- Statista. Reports. Digital & Trends 2022. Available online: https://www.statista.com/studies-and-reports/digital-and-trend (accessed on 3 March 2022).
- GPeC Romanian E-Commerce 2021 Report. Available online: https://www.gpec.ro/blog/en/gpec-romanian-e-commerce-2021-report (accessed on 5 March 2022).
- Hossain, S.F.A.; Xi, Z.; Nurunnabi, M.; Hussain, K. Ubiquitous Role of Social Networking in Driving M-Commerce: Evaluating the Use of Mobile Phones for Online Shopping and Payment in the Context of Trust. SAGE Open 2020, 10, 2158244020939536. [Google Scholar] [CrossRef]
- Du, S.; Li, H. The Knowledge Mapping of Mobile Commerce Research: A Visual Analysis Based on I-Model. Sustainability 2019, 11, 1580. [Google Scholar] [CrossRef] [Green Version]
- Jain, N.; Tan, T. M-Commerce, Sales Concentration, and Inventory Management. Manuf. Serv. Oper. Manag. 2022. [Google Scholar] [CrossRef]
- Pollák, F.; Konečný, M.; Ščeulovs, D. Innovations in the Management of E-Commerce: Analysis of Customer Interactions during the COVID-19 Pandemic. Sustainability 2021, 13, 7986. [Google Scholar] [CrossRef]
- Gerlich, M. COVID-19 Induced Changes in Consumer Behavior. Open J. Bus. Manag. 2021, 9, 2425–2451. [Google Scholar] [CrossRef]
- Hodbod, A.; Hommes, C.; Huber, S.J.; Salle, I. The COVID-19 Consumption Game-Changer: Evidence from a Large-Scale Multi-Country Survey. Eur. Econ. Rev. 2021, 140, 103953. [Google Scholar] [CrossRef]
- Lim, W.; Sham, R.; Loi, A.M.; Shion, E.; Wong, B.Y. M-commerce adoption among youths in Malaysia: Dataset article. Data Brief 2022, 2, 108238. [Google Scholar] [CrossRef]
- Agarwal, R.; Mehrotra, A. SEM approach to understanding m-commerce use in a developing country. Int. J. Bus. Glob. 2021, 27, 403–423. [Google Scholar] [CrossRef]
- Williams, S.N.; Armitage, C.J.; Tampe, T.; Dienes, K. Public perceptions and experiences of social distancing and social isolation during the COVID-19 pandemic: A UK-based focus group study. BMJ Open 2020, 10, e039334. [Google Scholar] [CrossRef]
- Julsrud, D.T.E.; Krogstad, D.J.R. Is there enough trust for the smart city? exploring acceptance for use of mobile phone data in Oslo and Tallinn. Technol. Forecast. Soc. Chang. 2020, 161, 120314. [Google Scholar] [CrossRef]
- Sarkar, S.; Chauhan, S.; Khare, A. A meta-analysis of antecedents and consequences of trust in mobile commerce. Int. J. Inf. 2020, 50, 286–301. [Google Scholar] [CrossRef]
- AlSondos, I.; Salameh, A. The effect of system quality and service quality toward using m-commerce service, based on consumer perspective. Manag. Sci. Lett. 2020, 10, 2589–2596. [Google Scholar] [CrossRef]
- Soni, M.; Jain, K.; Kumar, B. Factors affecting the adoption of fashion mobile shopping applications. J. Glob. Fash. Mark. 2019, 10, 358–376. [Google Scholar] [CrossRef]
- Brusch, I.; Rappel, N. Exploring the acceptance of instant shopping–An empirical analysis of the determinants of user intention. J. Retail. Consum. Serv. 2020, 54, 101936. [Google Scholar] [CrossRef]
- Liu, D.; Li, M. Exploring new factors affecting purchase intention of mobile commerce: Trust and social benefit as mediators. Int. J. Mob. Commun. 2019, 17, 108–125. [Google Scholar] [CrossRef]
- Taneja, B. The Digital Edge for M-Commerce to Replace E-Commerce. In Emerging Challenges, Solutions, and Best Practices for Digital Enterprise Transformation; Kamaljeet, S., Ed.; IGI Global: Hershey, PA, USA, 2021; pp. 299–318. [Google Scholar] [CrossRef]
- Bahaddad, A.A. The Traditional Influence on Increasing Acceptance of Commercial Smartphone Applications in Specific Regions of the Arabic World. Complexity 2021, 2021, 4336772. [Google Scholar] [CrossRef]
- Chau, N.T.; Deng, H.; Tay, R. A Perception-Based Model for Mobile Commerce Adoption in Vietnamese Small and Medium-Sized Enterprises. J. Glob. Inf. Manag. 2021, 29, 44–67. [Google Scholar] [CrossRef]
- Vărzaru, A.A.; Bocean, C.G. A Two-Stage SEM–Artificial Neural Network Analysis of Mobile Commerce and Its Drivers. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 127. [Google Scholar] [CrossRef]
- McLean, G.; Osei-Frimpong, K.; Al-Nabhani, K.; Marriott, H. Examining consumer attitudes towards retailers’ m-commerce mobile applications—An initial adoption vs. continuous use perspective. J. Bus. Res. 2020, 106, 139–157. [Google Scholar] [CrossRef]
- Shaw, N.; Sergueeva, K. The non-monetary benefits of mobile commerce: Extending UTAUT2 with perceived value. Int. J. Inf. Manag. 2019, 45, 44–55. [Google Scholar] [CrossRef]
- Blut, M. E-service quality: Development of a hierarchical model. J. Retail. 2016, 92, 500–517. [Google Scholar] [CrossRef] [Green Version]
- Gera, R.; Chadha, P.; Ahuja, V. Mobile shopping apps adoption: A systematic literature review. Int. J. Electron. Bus. 2021, 16, 239–261. [Google Scholar] [CrossRef]
- AlQahtani, Y.; Beloff, N.; White, M. A novel model of adoption of M-commerce in Saudi Arabia. In Proceedings of the 2020 Federated Conference on Computer Science and Information Systems, Sofia, Bulgaria, 6–9 September 2020; Volume 22, pp. 25–34. [Google Scholar] [CrossRef]
- Tan, M.L.; Prasanna, R.; Stock, K.; Doyle, E.E.; Leonard, G.; Johnston, D. Usability factors influencing the continuance intention of disaster apps: A mixed-methods study. Int. J. Disaster Risk Reduct. 2020, 50, 101874. [Google Scholar] [CrossRef]
- Xiao, L.; Lu, Q.; Guo, F. Mobile Personalized Recommendation Model Based on Privacy Concerns and Context Analysis for the Sustainable Development of M-commerce. Sustainability 2020, 12, 3036. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, S.H.; Lee, C.T.; Tseng, T.H. Branded app atmospherics: Examining the effect of pleasure-arousal-dominance in brand relationship building. J. Retailing Consum. Serv. 2021, 60, 102482. [Google Scholar] [CrossRef]
- Singh, N.; Sinha, N.; Liébana-Cabanillas, F.J. Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of innovativeness, stress to use and social influence. Int. J. Inf. Manag. 2020, 50, 191–205. [Google Scholar] [CrossRef]
- Iskandar, M.; Hartoyo, H.; Hermadi, I. Analysis of Factors Affecting Behavioral Intention and Use of Behavioral of Mobile Banking Using Unified Theory of Acceptance and Use of Technology 2 Model Approach. Int. Rev. Manag. Mark. 2020, 10, 41. [Google Scholar] [CrossRef]
- Liébana-Cabanillas, F.; Singh, N.; Kalinic, Z.; Carvajal-Trujillo, E. Examining the determinants of continuance intention to use and the moderating effect of the gender and age of users of NFC mobile payments: A multi-analytical approach. Inf. Technol. Manag. 2021, 22, 133–161. [Google Scholar] [CrossRef]
- Moorthy, K.; Chun T’ing, L.; Chea Yee, K.; Wen Huey, A.; Joe In, L.; Chyi Feng, P.; Jia Yi, T. What Drives the Adoption of Mobile Payment? A Malaysian Perspective. Int. J. Fin. Econ. 2020, 25, 349–364. [Google Scholar] [CrossRef]
- Kar, A.K. What Affects Usage Satisfaction in Mobile Payments? Modelling User Generated Content to Develop the “Digital Service Usage Satisfaction Model”. Inf. Syst. Front. 2021, 23, 1341–1361. [Google Scholar] [CrossRef]
- Sarmah, R.; Dhiman, N.; Kanojia, H. Understanding intentions and actual use of mobile wallets by millennial: An extended TAM model perspective. J. Indian Bus. Res. 2021, 13, 361–381. [Google Scholar] [CrossRef]
- Hariguna, T.; Adiandari, A.M.; Ruangkanjanases, A. Assessing customer intention use of mobile money application and the antecedent of perceived value, economic trust and service trust. Int. J. Web Inf. Syst. 2020, 16, 331–345. [Google Scholar] [CrossRef]
- Alalwan, A.A.; Algharabat, R.S.; Baabdullah, A.M.; Rana, N.P.; Qasem, Z.; Dwivedi, Y.K. Examining the impact of mobile interactivity on customer engagement in the context of mobile shopping. J. Enterp. Inform. Manag. 2020, 33, 627–653. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.M.; Liew, T.W. Multi-Chatbot or Single-Chatbot? The Effects of M-Commerce Chatbot Interface on Source Credibility, Social Presence, Trust, and Purchase Intention. Hum. Behav. Emerg. Technol. 2022, 2022, 2501538. [Google Scholar] [CrossRef]
- Pakurár, M.; Benedek, S.; Popp, J.; Magda, R.; Oláh, J. Trust or Doubt: Accuracy of Determining Factors for Supply Chain Performance. Pol. J. Manag. Stud. 2019, 19, 283–297. [Google Scholar] [CrossRef]
- Victor, V.; Thoppan, J.J.; Fekete-Farkas, M.; Grabara, J. Pricing strategies in the era of digitalisation and the perceived shift in consumer behaviour of youth in Poland. J. Int. Stud. 2019, 12, 74–91. [Google Scholar] [CrossRef]
- Javaria, K.; Masood, O.; Garcia, F. Strategies to manage the risks faced by consumers in developing e-commerce. Insights Into Reg. Dev. 2020, 2, 774–783. [Google Scholar] [CrossRef]
- Bandara, R.; Fernando, M.; Akter, S. Explicating the privacy paradox: A qualitative inquiry of online shopping consumers. J. Retail. Consum. Serv. 2020, 52, 101947. [Google Scholar] [CrossRef]
- Woźniak, J.; Zbuchea, A. Give or buy contexts and internet experience as a factor differentiating of readiness to provide different types of personal data in m-commerce. Entrep. Sustain. Cent. 2021, 8, 53–67. [Google Scholar] [CrossRef]
- Chmielarz, W.; Zborowski, M.; Jin, X.; Atasever, M.; Szpakowska, J. On a Comparative Analysis of Individual Customer Purchases on the Internet for Poland, Turkey and the People’s Republic of China at the Time of the COVID-19 Pandemic. Sustainability 2022, 14, 7366. [Google Scholar] [CrossRef]
- Dakduk, S.; Santalla-Banderali, Z.; Siqueira, J.R. Acceptance of mobile commerce in low-income consumers: Evidence from an emerging economy. Heliyon 2020, 6, e05451. [Google Scholar] [CrossRef]
- Akram, U.; Fülöp, M.T.; Tiron-Tudor, A.; Topor, D.I.; Căpușuneanu, S. Impact of Digitalization on Customers’ Well-Being in the Pandemic Period: Challenges and Opportunities for the Retail Industry. Int. J. Environ. Res. Public Health 2021, 18, 7533. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Park, J.W. Investigating factors influencing the behavioral intention of online duty-free shop users. Sustainability 2020, 12, 7108. [Google Scholar] [CrossRef]
- Sim, J.J.; Loh, S.H.; Wong, K.L.; Choong, C.K. Do We Need Trust Transfer Mechanisms? An M-Commerce Adoption Perspective. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 2241–2262. [Google Scholar] [CrossRef]
- Yang, F.; Tang, J.; Men, J.; Zheng, X. Consumer perceived value and impulse buying behavior on mobile commerce: The moderating effect of social influence. J. Retail. Consum. Serv. 2021, 63, 102683. [Google Scholar] [CrossRef]
- Ngubelanga, A.; Duffett, R. Modeling Mobile Commerce Applications’ Antecedents of Customer Satisfaction among Millennials: An Extended TAM Perspective. Sustainability 2021, 13, 5973. [Google Scholar] [CrossRef]
- Koch, J.; Frommeyer, B.; Schewe, G. Online Shopping Motives during the COVID-19 Pandemic—Lessons from the Crisis. Sustainability 2020, 12, 10247. [Google Scholar] [CrossRef]
- Cabrera-Sánchez, J.P.; Ramos-de-Luna, I.; Carvajal-Trujillo, E.; Villarejo-Ramos, Á.F. Online Recommendation Systems: Factors Influencing Use in E-Commerce. Sustainability 2020, 12, 8888. [Google Scholar] [CrossRef]
- Cui, Y.; Mou, J.; Cohen, J.; Liu, Y.; Kurcz, K. Understanding consumer intentions toward cross-border m-commerce usage: A psychological distance and commitment-trust perspective. Electron. Commer. Res. Appl. 2020, 39, 100920. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Srivastava, M.; Verma, S. Customer Experience in Online Shopping: A Structural Modeling Approach. J. Glob. Mark. 2018, 32, 3–16. [Google Scholar] [CrossRef]
- Barari, M.; Ross, M.; Surachartkumtonkun, J. Negative and positive customer shopping experience in an online context. J. Retail. Consum. Serv. 2020, 53, 101985. [Google Scholar] [CrossRef]
- Huang, E.Y.; Lin, S.W.; Fan, Y.C. M-S-QUAL: Mobile service quality measurement. Electron. Commer. Res. Appl. 2015, 14, 126–142. [Google Scholar] [CrossRef]
- Alotaibi, R.S. Understanding Customer Loyalty of M-Commerce Applications in Saudi Arabia. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Perri, C.; Giglio, C.; Corvello, V. Smart users for smart technologies: Investigating the intention to adopt smart energy consumption behaviors. Technol. Forecast. Soc. Chang. 2020, 155, 119991. [Google Scholar] [CrossRef]
- Gull, H.; Saeed, S.; Iqbal, S.Z.; Bamarouf, Y.A.; Alqahtani, M.A.; Alabbad, D.A.; Saqib, M.; Qahtani, S.H.A.; Alamer, A. An empirical study of mobile commerce and customers security perception in Saudi Arabia. Electronics 2022, 11, 293. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, T. Understanding Purchase Intention in O2O E-Commerce: The Effects of Trust Transfer and Online Contents. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 101–115. [Google Scholar] [CrossRef]
- Al-Khalaf, E.; Choe, P. Increasing customer trust towards mobile commerce in a multicultural society: A case of Qatar. J. Internet Commer. 2020, 19, 32–61. [Google Scholar] [CrossRef]
- Herhausen, D.; Kleinlercherb, K.; Verhoef, P.C.; Emrichd, O.; Rudolphb, T. Loyalty Formation for Different Customer Journey Segments. J. Retail. 2019, 95, 9–29. [Google Scholar] [CrossRef]
- Prashar, S.; Verma, P. The Effects of Online Cues and Perceived Risk on Customer Loyalty: An Empirical Study Among Online Footwear Buyers in India. Inf. Resour. Manag. J. 2020, 33, 64–75. [Google Scholar] [CrossRef]
- Massoudi, A. Consumer Loyalty Indicator as Drivers to Satisfaction. J. Humanit. Soc. Sci. 2020, 4, 41–45. [Google Scholar] [CrossRef]
- Datareportal. Digital 2022: Romania. Available online: https://datareportal.com/reports/digital-2022-romania (accessed on 20 May 2022).
- Statista. Most Popular Mobile Applications Accessed in Romania in 2021, by Type. Available online: https://www.statista.com/statistics/1272847/romania-most-popular-mobile-apps-by-type/ (accessed on 17 May 2022).
- Ecomedia.ro. Studiu: 83% Dintre Romani Sunt Deranjati de Stereotipurile Din Reclamele Online. Available online: https://ecompedia.ro/83-dintre-romani-sunt-deranjati-de-stereotipurile-din-reclamele-online-studiu/ (accessed on 17 May 2022).
- Schaufeli, W.; Shimazu, A.; Taris, T. Being Driven to Work Excessively Hard the Evaluation of a Two-Factor Measure of Workaholism in the Netherlands and Japan. Cross-Cult. Res. 2009, 43, 320–348. [Google Scholar] [CrossRef] [Green Version]
- Khaled Fahim, N.; Negida, A. Sample Size Calculation Guide—Part 1: How to Calculate the Sample Size Based on the Prevalence Rate. Adv. J. Emerg. Med. 2018, 2, e50. [Google Scholar] [CrossRef] [PubMed]
- Cicha, K.; Rizun, M.; Rutecka, P.; Strzelecki, A. COVID-19 and higher education: First-year students’ expectations toward distance learning. Sustainability 2021, 13, 1889. [Google Scholar] [CrossRef]
- IBM SPSS Software. Available online: https://www.ibm.com/analytics/spss-statistics-software (accessed on 12 May 2022).
- Ajayi, L.B.; Adebayo, A.T. Structural Equation Model (SEM). Am. J. Humanit. Soc. Sci. Res. 2021, 5, 11–19. [Google Scholar]
- Vărzaru, A.A. Assessing Artificial Intelligence Technology Acceptance in Managerial Accounting. Electronics 2022, 11, 2256. [Google Scholar] [CrossRef]
- Mundt, M.; Johnson, W.R.; Potthast, W.; Markert, B.; Mian, A.; Alderson, J. A Comparison of Three Neural Network Approaches for Estimating Joint Angles and Moments from Inertial Measurement Units. Sensors 2021, 21, 4535. [Google Scholar] [CrossRef] [PubMed]
- Tenenhaus, M.; Vinzi, V.E.; Chatelin, Y.M.; Lauro, C. PLS Path Modeling. Comput. Stat. Data Anal. 2005, 48, 159–205. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–151. [Google Scholar] [CrossRef]
- Verkijika, S.F. Factors influencing the adoption of mobile commerce applications in Cameroon. Telemat. Inform. 2018, 35, 1665–1674. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance. Long Range Plan. 2013, 46, 1–12. [Google Scholar] [CrossRef]
- George, D.; Mallery, P. SPSS for Windows Step by Step: A Simple Guide and Reference 17.0 Update, 10th ed.; Allyn & Bacon: Boston, MA, USA, 2009. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Chin, W.W. How to write up and report PLS analyses. In Handbook of Partial Least Squares: Concepts, Methods and Applications; Vinzi, V.E., Chin, W.W., Henseler, J., Wang, H., Eds.; Springer: Berlin, Germany, 2010; pp. 655–690. [Google Scholar] [CrossRef]
- Ullman, J.B. Structural equation modelling. In Using Multivariate Statistics, 4th ed.; Tabachnick, B.G., Fidell, L.S., Eds.; Pearson Education: Boston, MA, USA, 2001. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson: New York, NY, USA, 2010. [Google Scholar]
- Hu, L.T.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Bollen, K.A. Structural Equations with Latent Variables; John Wiley and Sons, Inc.: New York, NY, USA, 1989. [Google Scholar] [CrossRef]
- Bentler, P.M. Comparative Fit Indexes in Structural Models. Psychol. Bull. 1990, 107, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Leong, L.Y.; Hew, T.S.; Tan, G.W.H.; Ooi, K.B. Predicting the determinants of the NFC-enabled mobile credit card acceptance: A neural networks approach. Expert Syst. Appl. 2013, 40, 5604–5620. [Google Scholar] [CrossRef]
- Ooi, K.B.; Tan, G.W.H. Mobile technology acceptance model: An investigation using mobile users to explore smartphone credit card. Expert Syst. Appl. 2016, 59, 33–46. [Google Scholar] [CrossRef]
- Foo, P.Y.; Lee, V.H.; Tan, G.W.H.; Ooi, K.B. A gateway to realizing sustainability performance via green supply chain management practices: A PLS-ANN approach. Expert Syst. Appl. 2018, 107, 1–14. [Google Scholar] [CrossRef]
- Zabukovsek, S.S.; Kalinic, Z.; Bobek, S.; Tominc, P. SEM_ANN based research of factors’ impact on extended use of ERP systems. Cent. Eur. J. Oper. Res. 2018, 27, 703–735. [Google Scholar] [CrossRef]
- Žofčinová, V.; Čajková, A.; Král, R. Local Leader and the Labour Law Position in the Context of the Smart City Concept through the Optics of the EU. TalTech J. Eur. Stud. 2022, 12, 3–26. [Google Scholar] [CrossRef]
- Charaia, V.; Chochia, A.; Lashkhi, M. Promoting Fintech Financing for Sme In S. Caucasian And Baltic States, During The COVID-19 Global Pandemic. Bus. Manag. Econ. Eng. 2021, 19, 358–372. [Google Scholar] [CrossRef]
Latent Variables | Construct | Items | Coding | Source |
---|---|---|---|---|
Exogenous latent variables | Mobile site design and content (DC) | The content of the mobile site is concise | DC1 | [8,62,67,70,71,72] |
The content of the mobile site is accurate | DC2 | |||
The mobile site adequately meets my information needs | DC3 | |||
The mobile site contains all of the content as that on the regular site | DC4 | |||
The mobile site contains regularly updated content | DC5 | |||
The content provided is fully understandable | DC6 | |||
The mobile site displays a visually pleasing design | DC7 | [8,41,67,73] | ||
The mobile site loads pages quickly | DC8 | [8,59,67,68] | ||
The mobile site enables me to complete transactions quickly | DC9 | |||
It is easy to navigate to any area of the mobile site | DC10 | |||
The mobile site has no difficulties with making a payment online | DC11 | [58,70,75,76,77,78,79,80,81] | ||
Customer support (CP) | The service agents are able to quickly resolve the problem | CP1 | [30,74,82,83,84,85] | |
The service agents consistently provide useful advice | CP2 | |||
There is a dedicated online chat function on the mobile site | CP3 | |||
The mobile site offers the ability to speak to a live person if there is a problem. | CP4 | |||
There is a telephone number available to reach the company | CP5 | |||
The mobile site has a clear process for handling returns | CP6 | |||
The mobile site provides me with convenient options for returning items | CP7 | |||
The online shop offers a meaningful guarantee | CP8 | |||
Security/Privacy (SP) | The mobile site has adequate security features | SP1 | [36,40,68,69,73,87,88] | |
This mobile site protects information about my card | SP2 | |||
I trust the mobile site to keep my personal information safe | SP3 | |||
It protects information about my mobile-shopping behavior | SP4 | |||
Fulfilment (FF) | The product is delivered by the time promised by the company | FF1 | [21,52,89,90,91,92,93,94] | |
The mobile site suggests a time frame for when the item will be delivered | FF2 | |||
The mobile site sends out the correct items | FF3 | |||
The ordered products arrived in good condition | FF4 | |||
The mobile site has accurate stock information | FF5 | |||
Endogenous latent variables | M-commerce service quality (MQ) | Overall, my purchase experience with this mobile site is very good | MQ1 | [40,41,42,43] |
The overall quality of the services provided by this mobile site is very good | MQ2 | |||
My overall feelings toward this mobile site are very satisfied | MQ3 | |||
Customer satisfaction (CS) | My choice to purchase from the mobile site was wise | CS1 | [40,66,69,85,90,95,97,98,99,100,101] | |
The mobile site has met my expectations | CS2 | |||
I did the right thing by choosing this mobile site | CS3 | |||
The mobile site enabled a pleasant shopping experience | CS4 | |||
Customer trust (CT) | This online shop is genuinely interested in customer’s welfare | CT1 | [7,27,29,35,40,43,53,58,77,91,98,102,103,104,105,106] | |
If problems arise, one can expect to be treated fairly by this online shop | CT2 | |||
I am happy with the standards by which this online shop is operating | CT3 | |||
You can believe the statements of this online shop | CT4 | |||
Customer loyalty (CL) | I will continue to use the mobile site to shop for new goods | CL1 | [40,41,43,93,99,101,102,107,108,109] | |
I would recommend this mobile site to other people | CL2 | |||
I will encourage people to purchase from this mobile site | CL3 | |||
This mobile site will be my preference when I shop again | CL4 |
Variables | Category | Number (N) | Percentage (%) |
---|---|---|---|
Gender | Female | 327 | 58.39 |
Male | 233 | 41.61 | |
Age | 18–25 | 138 | 24.65 |
26–40 | 243 | 43.39 | |
41–56 | 117 | 20.89 | |
>56 | 62 | 11.07 | |
Education | High school diploma | 87 | 15.54 |
Bachelor’s degree | 189 | 33.75 | |
Master’s degree | 247 | 44.11 | |
Ph.D. degree and above | 37 | 6.60 | |
Employment | Full time employment | 297 | 53.04 |
Part time employment | 16 | 2.88 | |
Student | 154 | 27.50 | |
Unemployment | 25 | 4.45 | |
Retired | 37 | 6.60 | |
Other | 31 | 5.53 | |
Monthly income | Less than EUR 400 | 112 | 20.00 |
EUR 401–1000 | 211 | 37.68 | |
EUR 1001–1500 | 143 | 25.54 | |
EUR 1501–2000 | 76 | 13.57 | |
More than EUR 2001 | 18 | 3.21 | |
M-shopping experience | Less than 12 months | 52 | 9.29 |
1–2 years | 189 | 33.75 | |
2–3 years | 163 | 29.11 | |
More than 3 years | 156 | 27.85 | |
M-shopping: times purchased in 2021–2022 | 1–2 | 22 | 3.93 |
3–4 | 55 | 9.82 | |
5–6 | 136 | 24.29 | |
More than 6 | 347 | 61.96 | |
Total | 560 | 100 |
Construct | CA | CR | DG rho | AVE | SR AVE | VIF |
---|---|---|---|---|---|---|
Mobile site design and content (DC) | 0.922 | 0.894 | 0.915 | 0.713 | 0.844 | 1.490 |
Customer support (CP) | 0.886 | 0.866 | 0.904 | 0.656 | 0.810 | 1.150 |
Security/Privacy (SP) | 0.919 | 0.774 | 0.778 | 0.740 | 0.860 | 1.720 |
Fulfilment (FF) | 0.866 | 0.806 | 0.849 | 0.699 | 0.836 | 1.910 |
M-commerce service quality (MQ) | 0.826 | 0.706 | 0.754 | 0.643 | 0.802 | 3.126 |
Customer satisfaction (CS) | 0.824 | 0.764 | 0.808 | 0.657 | 0.810 | 4.322 |
Customer trust (CT) | 0.773 | 0.760 | 0.826 | 0.628 | 0.793 | 3.885 |
Customer loyalty (CL) | 0.837 | 0.763 | 0.810 | 0.654 | 0.809 |
Kaiser–Meyer–Olkin Test of Sampling Adequacy | 0.803 | |
---|---|---|
Bartlett’s Test of Sphericity | Approx. chi-square | 160.790 |
df | 68 | |
Sig. | 0.000 |
DC | CP | SP | FF | MQ | CS | CT | CL | |
---|---|---|---|---|---|---|---|---|
DC | 0.844 | |||||||
CP | 0.071 | 0.810 | ||||||
SP | 0.241 | 0.115 | 0.860 | |||||
FF | 0.376 | 0.169 | 0.399 | 0.836 | ||||
MQ | 0.612 | 0.207 | 0.739 | 0.718 | 0.802 | |||
CS | 0.450 | 0.387 | 0.415 | 0.637 | 0.776 | 0.810 | ||
CT | 0.344 | 0.344 | 0.529 | 0.643 | 0.675 | 0.791 | 0.793 | |
CL | 0.472 | 0.243 | 0.504 | 0.694 | 0.791 | 0.801 | 0.790 | 0.809 |
Fit Indices | GFI | SRMR | RMSEA | NFI | IFI | CFI | |
---|---|---|---|---|---|---|---|
Recommended value | <2 | >0.90 | <0.08 | <0.06 | >0.90 | >0.90 | >0.90 |
Source | [127] | [128] | [129] | [129] | [130] | [130] | [131] |
Modified Model | 1.468 | 0.925 | 0.073 | 0.058 | 0.916 | 0.952 | 0.947 |
Hypothesis | Paths Correlation | Path Coeff. (β) | p | Results |
---|---|---|---|---|
H1 | Mobile site design and content (DC) → M-commerce service quality (MQ) | 0.269 | *** | Supported |
H2 | Customer support (CP) → M-commerce service quality (MQ) | 0.166 | *** | Supported |
H3 | Security/Privacy (SP) → M-commerce service quality (MQ) | 0.365 | *** | Supported |
H4 | Fulfilment (FF) → M-commerce service quality (MQ) | 0.476 | *** | Supported |
H5 | M-commerce service quality (MQ) → Customer satisfaction (CS) | 0.942 | *** | Supported |
H6 | M-commerce service quality (MQ) → Customer trust (CT) | 0.871 | *** | Supported |
H7 | Customer satisfaction (CS) → Customer loyalty (CL) | 0.651 | *** | Supported |
H8 | Customer trust (CT) → Customer loyalty (CL) | 0.283 | *** | Supported |
DC | CP | SP | FF | MQ | CS | CT | |
---|---|---|---|---|---|---|---|
Standardized total effects | |||||||
MQ | 0.269 | 0.166 | 0.365 | 0.476 | 0.000 | 0.000 | 0.000 |
CS | 0.254 | 0.156 | 0.344 | 0.448 | 0.942 | 0.000 | 0.000 |
CT | 0.234 | 0.144 | 0.318 | 0.414 | 0.871 | 0.000 | 0.000 |
CL | 0.231 | 0.142 | 0.313 | 0.409 | 0.859 | 0.651 | 0.283 |
Standardized direct effects | |||||||
MQ | 0.269 | 0.166 | 0.365 | 0.476 | 0.000 | 0.000 | 0.000 |
CS | 0.000 | 0.000 | 0.000 | 0.000 | 0.942 | 0.000 | 0.000 |
CT | 0.000 | 0.000 | 0.000 | 0.000 | 0.871 | 0.000 | 0.000 |
CL | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.651 | 0.283 |
Standardized indirect effects | |||||||
MQ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
CS | 0.254 | 0.156 | 0.344 | 0.448 | 0.000 | 0.000 | 0.000 |
CT | 0.234 | 0.144 | 0.318 | 0.414 | 0.000 | 0.000 | 0.000 |
CL | 0.231 | 0.142 | 0.313 | 0.409 | 0.859 | 0.000 | 0.000 |
Input: DC, CP, SP, FF, MQ, CS, CT Output: CL | ||||
---|---|---|---|---|
Neural Network | Training Dataset (80% of Data Sample 560, n = 448) | Testing Dataset (20% of Data Sample 560, n = 112) | ||
SSE | RMSE | SSE | RMSE | |
ANN1 | 0.138 | 0.0176 | 0.127 | 0.0337 |
ANN2 | 0.133 | 0.0172 | 0.124 | 0.0333 |
ANN3 | 0.129 | 0.0170 | 0.119 | 0.0326 |
ANN4 | 0.126 | 0.0168 | 0.113 | 0.0318 |
ANN5 | 0.131 | 0.0171 | 0.130 | 0.0341 |
ANN6 | 0.127 | 0.0168 | 0.132 | 0.0343 |
ANN7 | 0.119 | 0.0163 | 0.126 | 0.0335 |
ANN8 | 0.118 | 0.0162 | 0.132 | 0.0343 |
ANN9 | 0.116 | 0.0161 | 0.127 | 0.0337 |
ANN10 | 0.110 | 0.0157 | 0.104 | 0.0305 |
Mean | 0.0167 | Mean | 0.0332 |
Predictors (Independent Variables) | Average Relative Importance | Normalized Importance (%) | Ranking |
---|---|---|---|
DC | 0.154 | 46.2 | 7 |
CP | 0.178 | 53.5 | 6 |
SP | 0.185 | 55.6 | 5 |
FF | 0.258 | 77.5 | 4 |
MQ | 0.333 | 100 | 1 |
CS | 0.306 | 91.9 | 2 |
CT | 0.286 | 85.9 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehedintu, A.; Soava, G. A Hybrid SEM-Neural Network Modeling of Quality of M-Commerce Services under the Impact of the COVID-19 Pandemic. Electronics 2022, 11, 2499. https://doi.org/10.3390/electronics11162499
Mehedintu A, Soava G. A Hybrid SEM-Neural Network Modeling of Quality of M-Commerce Services under the Impact of the COVID-19 Pandemic. Electronics. 2022; 11(16):2499. https://doi.org/10.3390/electronics11162499
Chicago/Turabian StyleMehedintu, Anca, and Georgeta Soava. 2022. "A Hybrid SEM-Neural Network Modeling of Quality of M-Commerce Services under the Impact of the COVID-19 Pandemic" Electronics 11, no. 16: 2499. https://doi.org/10.3390/electronics11162499
APA StyleMehedintu, A., & Soava, G. (2022). A Hybrid SEM-Neural Network Modeling of Quality of M-Commerce Services under the Impact of the COVID-19 Pandemic. Electronics, 11(16), 2499. https://doi.org/10.3390/electronics11162499