Diagnosis of Histopathological Images to Distinguish Types of Malignant Lymphomas Using Hybrid Techniques Based on Fusion Features
Abstract
:1. Introduction
- The enhancement of histopathological images of lymphomas and increase of the contrast of affected areas.
- The implementation of a hybrid technology that consists of using deep learning models to extract deep features, deleting the classification layers, and replacing them with the SVM algorithm for feature classification.
- A satisfactory and reliable diagnosis using an FFNN classifier according to mixed features of deep learning combined with hand-crafted features.
- A reduction of the high-dimensional features and determination of the most important features using the PCA algorithm
2. Related Work
3. Materials and Methods
3.1. Dataset
3.1.1. First Dataset
3.1.2. Second Dataset
3.2. Enhancing Histopathological Images
3.3. Approach to Integrating CNN with Machine Learning
3.3.1. Deep Feature Extraction
3.3.2. SVM Algorithm
3.4. FFNN with Merging the Features of CNN and Hand-Crafted Features
4. Experimental Results
4.1. Splitting of the Datasets
4.2. Augmentation of Data
4.3. Proposed Methods Evaluation Metrics
4.4. Experimental Results of Hybrid Technique
4.5. Results of FFNN Network in Merging the Features of CNN with Hand-Crafted Features
4.5.1. Error Histogram
4.5.2. Validation and Gradient
4.5.3. Best Performance of Validation
4.5.4. Confusion Matrix
5. Discussion and Comparison of Performance
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hirota, K.; Matsuse, H.; Koya, S.; Hashida, R.; Bekki, M.; Yanaga, Y.; Johzaki, K.; Tomino, M.; Mouri, F.; Morishige, S.; et al. Risks of muscle atrophy in patients with malignant lymphoma after autologous stem cell transplantation. Phys. Ther. Res. 2020, 24, E10041. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Rao, J.; Li, J.; Wen, Q.; Wang, S.; Lou, S.; Zhang, X. Tandem autologous hematopoietic stem cell transplantation for treatment of adult T-cell lymphoblastic lymphoma: A multiple center prospective study in China. Haematological 2021, 106, 163. [Google Scholar] [CrossRef] [PubMed]
- Kasinathan, G. Series of Low-Grade B-Cell Lymphoma: Follicular Lymphoma, Marginal Zone Lymphoma, Waldenstrom Macroglobulinemia and Mantle Cell Lymphoma. Open Access Library J. 2020, 7, 1–18. [Google Scholar] [CrossRef]
- McNamara, C.; Montoto, S.; Eyre, T.A.; Ardeshna, K.; Burton, C.; Illidge, T.M.; McKay, P. Update: The investigation and management of follicular lymphoma. Br. J. Haematol. 2020, 191, 363–381. [Google Scholar] [CrossRef] [PubMed]
- Mckay, P.; Leach, M.; Jackson, R.; Cook, G.; Rule, S. Guidelines for the investigation and management of mantle cell lymphoma. British journal of haematology. Br. Comm. Stand. Haematol. 2012, 159, 405. [Google Scholar] [CrossRef] [PubMed]
- Management of Chronic Lymphocytic Leukaemia in Older Patients—Ecancer. Available online: https://ecancer.org/en/elearning/module/293-management-of-chronic-lymphocytic-leukaemia-in-older-patients? (accessed on 23 January 2022).
- WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues—IARC. Available online: https://www.iarc.who.int/news-events/who-classification-of-tumours-of-haematopoietic-and-lymphoid-tissues-2/ (accessed on 23 January 2022).
- Choi, J.W.; Lee, Y.; Kim, H.; Cho, H.Y.; Min, S.K.; Kim, Y.S. Coexpression of MCT1 and MCT4 in ALK-positive anaplastic large cell lymphoma: Diagnostic and therapeutic implications. Am. J. Surg. Pathol. 2022, 46, 241–248. [Google Scholar] [CrossRef]
- Castiglioni, I.; Rundo, L.; Codari, M.; Di Leo, G.; Salvatore, C.; Interlenghi, M.; Sardanelli, F. AI applications to medical images: From machine learning to deep learning. Phys. Med. 2021, 83, 9–24. [Google Scholar] [CrossRef]
- Miyoshi, H.; Sato, K.; Kabeya, Y.; Yonezawa, S.; Nakano, H.; Takeuchi, Y.; Ohshima, K. Deep learning shows the capability of high-level computer-aided diagnosis in malignant lymphoma. Lab. Investig. 2020, 100, 1300–1310. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, K.; Jiang, M.; Yang, L. Research on the classification of lymphoma pathological images based on deep residual neural network. Technol. Health Care 2021, 29, 335–344. Available online: https://content.iospress.com/articles/technology-and-health-care/thc218031 (accessed on 10 March 2022). [CrossRef]
- Hashimoto, N.; Ko, K.; Yokota, T.; Kohno, K.; Nakaguro, M.; Nakamura, S.; Hontani, H. Subtype classification of malignant lymphoma using immunohistochemical staining pattern. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 1379–1389. [Google Scholar] [CrossRef]
- Stefancu, A.; Moisoiu, V.; Desmirean, M.; Iancu, S.D.; Tigu, A.B.; Petrushev, B.; Tomuleasa, C. SERS-based DNA methylation profiling allows the differential diagnosis of malignant lymphadenopathy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 264, 120216. Available online: https://www.sciencedirect.com/science/article/pii/S1386142521007939 (accessed on 23 January 2022). [CrossRef] [PubMed]
- Sheng, B.; Zhou, M.; Hu, M.; Li, Q.; Sun, L.; Wen, Y. A blood cell dataset for lymphoma classification using faster R-CNN. Biotechnol. Biotechnol. Equip. 2020, 34, 413–420. [Google Scholar] [CrossRef]
- Gaidano, V.; Tenace, V.; Santoro, N.; Varvello, S.; Cignetti, A.; Prato, G.; Saglio, G.; De Rosa, G.; Geuna, M. A Clinically Applicable Approach to the Classification of B-Cell Non-Hodgkin Lymphomas with Flow Cytometry and Machine Learning. Cancers 2020, 12, 1684. [Google Scholar] [CrossRef]
- Steinbuss, G.; Kriegsmann, M.; Zgorzelski, C.; Brobeil, A.; Goeppert, B.; Dietrich, S.; Mechtersheimer, G.; Kriegsmann, K. Deep Learning for the Classification of Non-Hodgkin Lymphoma on Histopathological Images. Cancers 2021, 13, 2419. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, A.; Das, R.; Setua, S.K. Histopathological Image and Lymphoma Image Classification using customized Deep Learning models and different optimization algorithms. In Proceedings of the 2020 IEEE 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020; pp. 1–7. Available online: https://ieeexplore.ieee.org/abstract/document/9225616/ (accessed on 10 March 2022).
- Li, D.; Bledsoe, J.R.; Zeng, Y.; Liu, W.; Hu, Y.; Bi, K.; Li, S. A deep learning diagnostic platform for diffuse large B-cell lymphoma with high accuracy across multiple hospitals. Nat. Commun. 2020, 11, 6004. [Google Scholar] [CrossRef]
- Syrykh, C.; Abreu, A.; Amara, N.; Siegfried, A.; Maisongrosse, V.; Frenois, F.X.; Brousset, P. Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning. NPJ Digit. Med. 2020, 3, 1–8. Available online: https://www.nature.com/articles/s41746-020-0272-0 (accessed on 10 March 2022). [CrossRef] [PubMed]
- Lisson, C.S.; Lisson, C.G.; Mezger, M.F.; Wolf, D.; Schmidt, S.A.; Thaiss, W.M.; Tausch, E.; Beer, A.J.; Stilgenbauer, S.; Beer, M.; et al. Deep Neural Networks and Machine Learning Radiomics Modelling for Prediction of Relapse in Mantle Cell Lymphoma. Cancers 2022, 14, 2008. [Google Scholar] [CrossRef]
- Multi Cancer Dataset|Kaggle. Available online: https://www.kaggle.com/datasets/obulisainaren/multi-cancer (accessed on 23 January 2022).
- Orlov, N.V.; Chen, W.W.; Eckley, D.M.; Macura, T.J.; Shamir, L.; Jaffe, E.S.; Goldberg, I.G. Automatic classification of lymphoma images with transform-based global features. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1003–1013. [Google Scholar] [CrossRef]
- Senan, E.M.; Jadhav, M.E.; Rassem, T.H.; Aljaloud, A.S.; Mohammed, B.A.; Al-Mekhlafi, Z.G. Early Diagnosis of Brain Tumour MRI Images Using Hybrid Techniques between Deep and Machine Learning. Comput. Math. Methods Med. 2022, 2022, 8330833. Available online: https://www.hindawi.com/journals/cmmm/2022/8330833/ (accessed on 10 March 2022). [CrossRef]
- Li, X.; Chen, H.; Li, C.; Rahaman, M.M.; Li, X.; Wu, J.; Grzegorzek, M. What Can Machine Vision Do for Lymphatic Histopathology Image Analysis: A Comprehensive Review. arXiv 2022, arXiv:2201.08550. [Google Scholar]
- Abunadi, I.; Senan, E.M. Multi-Method Diagnosis of Blood Microscopic Sample for Early Detection of Acute Lymphoblastic Leukemia Based on Deep Learning and Hybrid Techniques. Sensors 2022, 22, 1629. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Xinwang, L.I.U.; Zheng, X.; Li, W.; Xiong, J.; Wang, L.; Longo, A. DeFusionNET: Defocus blur detection via recurrently fusing and refining discriminative multi-scale deep features. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 955–968. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.A.; Senan, E.M.; Rassem, T.H.; Ali, M.A.; Shatnawi, H.S.A.; Alwazer, S.M.; Alshahrani, M. Eye Tracking-Based Diagnosis and Early Detection of Autism Spectrum Disorder Using Machine Learning and Deep Learning Techniques. Electronics 2022, 11, 530. [Google Scholar] [CrossRef]
- McAvoy, M.; Prieto, P.C.; Kaczmarzyk, J.R.; Fernández, I.S.; McNulty, J.; Smith, T.; Arnaout, O. Classification of glioblastoma versus primary central nervous system lymphoma using convolutional neural networks. Sci. Rep. 2021, 11, 15219. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, B.A.; Senan, E.M.; Al-Mekhlafi, Z.G.; Rassem, T.H.; Makbol, N.M.; Alanazi, A.A.; Almurayziq, T.S.; Ghaleb, F.A.; Sallam, A.A. Multi-Method Diagnosis of CT Images for Rapid Detection of Intracranial Hemorrhages Based on Deep and Hybrid Learning. Electronics 2022, 11, 2460. [Google Scholar] [CrossRef]
- Mohammed, B.A.; Senan, E.M.; Rassem, T.H.; Makbol, N.M.; Alanazi, A.A.; Al-Mekhlafi, Z.G.; Ghaleb, F.A. Multi-method analysis of medical records and MRI images for early diagnosis of dementia and Alzheimer’s disease based on deep learning and hybrid methods. Electronics 2021, 10, 2860. Available online: https://www.mdpi.com/1367446 (accessed on 10 March 2022). [CrossRef]
- Al-Mekhlafi, Z.G.; Senan, E.M.; Rassem, T.H.; Mohammed, B.A.; Makbol, N.M.; Alanazi, A.A.; Ghaleb, F.A. Deep Learning and Machine Learning for Early Detection of Stroke and Haemorrhage. Comput. Mater. Contin. 2022, 72, 775–796. Available online: http://eprints.bournemouth.ac.uk/36721/ (accessed on 23 January 2022). [CrossRef]
- Senan, E.M.; Jadhav, M.E. Diagnosis of dermoscopy images for the detection of skin lesions using SVM and KNN. In Proceedings of Third International Conference on Sustainable Computing; Springer: Singapore, 2022; pp. 125–134. [Google Scholar] [CrossRef]
- Senan, E.M.; Jadhav, M.E.; Kadam, A. Classification of PH2 images for early detection of skin diseases. In Proceedings of the 2021 6th International Conference for Convergence in Technology, Maharashtra, India, 2–4 April 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Senan, E.M.; Jadhav, M.E. Techniques for the Detection of Skin Lesions in PH 2 Dermoscopy Images Using Local Binary Pattern (LBP). In International Conference on Recent Trends in Image Processing and Pattern Recognition; Springer: Singapore, 2020; pp. 14–25. [Google Scholar] [CrossRef]
- Xia, W.; Hu, B.; Li, H.; Shi, W.; Tang, Y.; Yu, Y.; Li, Y. Deep learning for automatic differential diagnosis of primary central nervous system lymphoma and glioblastoma: Multi-parametric magnetic resonance imaging based convolutional neural network model. J. Magn. Reson. Imaging 2021, 54, 880–887. [Google Scholar] [CrossRef]
- Abunadi, I.; Senan, E.M. Deep Learning and Machine Learning Techniques of Diagnosis Dermoscopy Images for Early Detection of Skin Diseases. Electronics 2021, 10, 3158. [Google Scholar] [CrossRef]
- Fati, S.M.; Senan, E.M.; Azar, A.T. Hybrid and Deep Learning Approach for Early Diagnosis of Lower Gastrointestinal Diseases. Sensors 2022, 22, 4079. [Google Scholar] [CrossRef] [PubMed]
- Senan, E.M.; Abunadi, I.; Jadhav, M.E.; Fati, S.M. Score and Correlation Coefficient-Based Feature Selection for Predicting Heart Failure Diagnosis by Using Machine Learning Algorithms. Comput. Math. Methods Med. 2021, 2021, 8500314. [Google Scholar] [CrossRef] [PubMed]
- Lippi, M.; Gianotti, S.; Fama, A.; Casali, M.; Barbolini, E.; Ferrari, A.; Bertolini, M. Texture analysis and multiple-instance learning for the classification of malignant lymphomas. Comput. Methods Programs Biomed. 2020, 185, 105153. [Google Scholar] [CrossRef] [PubMed]
Datasets | The First Dataset | The Second Dataset | ||||
---|---|---|---|---|---|---|
Phase | Training and Validation | Testing (20%) | Training and Validation | Testing (20%) | ||
Classes | Training (80%) | Validation (20%) | Training (80%) | Validation (20%) | ||
CLL | 3800 | 800 | 1000 | 72 | 18 | 23 |
FL | 3800 | 800 | 1000 | 89 | 22 | 28 |
MCL | 3800 | 800 | 1000 | 78 | 20 | 24 |
Phase | Training Phase | ||
---|---|---|---|
Classes | CLL | FC | MCL |
Before_aug | 72 | 89 | 78 |
After_aug | 3600 | 3649 | 3666 |
Datasets | First Dataset | Second Dataset | ||
---|---|---|---|---|
Metrics | DenseNet-121 + SVM | ResNet-50 + SVM | DenseNet-121 + SVM | ResNet-50 + SVM |
Accuracy% | 97.7 | 98.8 | 96 | 97.3 |
Specificity % | 99.11 | 99.33 | 98 | 98.66 |
Precision % | 97.66 | 98.66 | 96.33 | 97.33 |
Sensitivity % | 97.71 | 98.7 | 95.97 | 97.12 |
AUC % | 98.14 | 98.54 | 97.57 | 97.79 |
Datasets | First Dataset | Second Dataset | ||
---|---|---|---|---|
Hybrid Features | DenseNet-121 and Hand-Crafted | ResNet-50 and Hand-Crafted | DenseNet-121 and Hand-Crafted | ResNet-50 and Hand-Crafted |
Accuracy % | 99.3 | 99.5 | 98.7 | 100 |
Specificity % | 99.67 | 100 | 99.31 | 100 |
Precision % | 99.43 | 99.65 | 98.65 | 100 |
Sensitivity % | 99.1 | 99.33 | 98.74 | 100 |
AUC % | 99.74 | 99.86 | 99.12 | 100 |
Datasets | First Dataset | Second Dataset | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Systems | CLL % | FL % | MCL % | Overall Accuracy % | CLL % | FL % | MCL % | Overall Accuracy % | ||
Hybrid System | DenseNet-121 + SVM | 97.7 | 98.4 | 97.1 | 97.7 | 95.7 | 96.4 | 95.8 | 96 | |
ResNet-50 + SVM | 98.3 | 99.2 | 98.8 | 98.8 | 91.3 | 100 | 100 | 97.3 | ||
Fusion Features | FFNN Classifier | DenseNet-121, GLCM, FCH, DWT, and LBP | 99.3 | 99.4 | 99.1 | 99.3 | 95.7 | 100 | 100 | 98.7 |
ResNet-50, GLCM, FCH, DWT, and LBP | 99.4 | 99.7 | 99.5 | 99.5 | 100 | 100 | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mekhlafi, Z.G.; Senan, E.M.; Mohammed, B.A.; Alazmi, M.; Alayba, A.M.; Alreshidi, A.; Alshahrani, M. Diagnosis of Histopathological Images to Distinguish Types of Malignant Lymphomas Using Hybrid Techniques Based on Fusion Features. Electronics 2022, 11, 2865. https://doi.org/10.3390/electronics11182865
Al-Mekhlafi ZG, Senan EM, Mohammed BA, Alazmi M, Alayba AM, Alreshidi A, Alshahrani M. Diagnosis of Histopathological Images to Distinguish Types of Malignant Lymphomas Using Hybrid Techniques Based on Fusion Features. Electronics. 2022; 11(18):2865. https://doi.org/10.3390/electronics11182865
Chicago/Turabian StyleAl-Mekhlafi, Zeyad Ghaleb, Ebrahim Mohammed Senan, Badiea Abdulkarem Mohammed, Meshari Alazmi, Abdulaziz M. Alayba, Abdulrahman Alreshidi, and Mona Alshahrani. 2022. "Diagnosis of Histopathological Images to Distinguish Types of Malignant Lymphomas Using Hybrid Techniques Based on Fusion Features" Electronics 11, no. 18: 2865. https://doi.org/10.3390/electronics11182865
APA StyleAl-Mekhlafi, Z. G., Senan, E. M., Mohammed, B. A., Alazmi, M., Alayba, A. M., Alreshidi, A., & Alshahrani, M. (2022). Diagnosis of Histopathological Images to Distinguish Types of Malignant Lymphomas Using Hybrid Techniques Based on Fusion Features. Electronics, 11(18), 2865. https://doi.org/10.3390/electronics11182865