Data Driven SVBRDF Estimation Using Deep Embedded Clustering
Abstract
:1. Introduction
- We proposed Deep embedding clustering-based joint update scheme simultaneously updating non-parametric basis BRDFs and their linear manifold.
- We designed a novel autoencoder that is suited for learning the appearance properties of complex objects using unsupervised learning.
- We demonstrate that our network produces a high-quality rendering result in different illumination conditions.
2. Related Work
2.1. Point-Wise Estimation
2.2. Estimation Using BRDF Examples
2.3. Estimation Using Linear Subspace
2.4. Estimation Using Deep Learning
3. Preliminaries
4. Deep Embedding Network
4.1. Manifold Mapping
4.2. Rendering Loss
4.3. Network Initialization
5. Results
5.1. Comparison for the Reconstruction Quality
5.2. Comparison with the Iterative Optimization Method
5.3. Gradient Observation
5.4. Comparison of Photometric Stereo Data
5.5. Sensitivity for Normal Error
5.6. Selection of
5.7. Relighting Result
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lawrence, J.; Ben-Artzi, A.; DeCoro, C.; Matusik, W.; Pfister, H.; Ramamoorthi, R.; Rusinkiewicz, S. Inverse shade trees for non-parametric material representation and editing. ACM Trans. Graph. 2006, 25, 735–745. [Google Scholar] [CrossRef] [Green Version]
- Nam, G.; Lee, J.H.; Gutierrez, D.; Kim, M.H. Practical SVBRDF acquisition of 3D objects with unstructured flash photography. In Proceedings of the SIGGRAPH Asia 2018 Technical Papers, Hong Kong, China, 19–22 November 2018; p. 267. [Google Scholar]
- Lensch, H.P.; Kautz, J.; Goesele, M.; Heidrich, W.; Seidel, H.P. Image-based reconstruction of spatially varying materials. In Rendering Techniques 2001; Springer: Berlin/Heidelberg, Germany, 2001; pp. 103–114. [Google Scholar]
- Holroyd, M.; Lawrence, J.; Zickler, T. A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance. ACM Trans. Graph. 2010, 29, 99. [Google Scholar] [CrossRef]
- Albert, R.A.; Chan, D.Y.; Goldman, D.B.; O’Brien, J.F. Approximate svBRDF estimation from mobile phone video. In Proceedings of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations, Karlsruhe, Germany, 1–4 July 2018; pp. 11–22. [Google Scholar]
- Gardner, A.; Tchou, C.; Hawkins, T.; Debevec, P. Linear light source reflectometry. ACM Trans. Graph. 2003, 22, 749–758. [Google Scholar] [CrossRef]
- Aittala, M.; Weyrich, T.; Lehtinen, J. Practical SVBRDF capture in the frequency domain. ACM Trans. Graph. 2013, 32, 110–111. [Google Scholar] [CrossRef]
- Kang, K.; Chen, Z.; Wang, J.; Zhou, K.; Wu, H. Efficient reflectance capture using an autoencoder. ACM Trans. Graph 2018, 37, 127. [Google Scholar] [CrossRef]
- Debevec, P.; Tchou, C.; Gardner, A.; Hawkins, T.; Poullis, C.; Stumpfel, J.; Jones, A.; Yun, N.; Einarsson, P.; Lundgren, T.; et al. Estimating surface reflectance properties of a complex scene under captured natural illumination. Cond. Accept. Acm Trans. Graph. 2004, 19, 1–11. [Google Scholar]
- Ren, P.; Wang, J.; Snyder, J.; Tong, X.; Guo, B. Pocket reflectometry. ACM Trans. Graph. 2011, 30, 45. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, J.; Tong, X.; Snyder, J.; Lan, Y.; Ben-Ezra, M.; Guo, B. Manifold bootstrapping for SVBRDF capture. ACM Trans. Graph. 2010, 29, 98. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, G.; Dong, Y.; Wipf, D.; Yu, Y.; Snyder, J.; Tong, X. Sparse-as-possible SVBRDF acquisition. ACM Trans. Graph. 2016, 35, 189. [Google Scholar] [CrossRef]
- Li, X.; Dong, Y.; Peers, P.; Tong, X. Modeling surface appearance from a single photograph using self-augmented convolutional neural networks. ACM Trans. Graph. 2017, 36, 45. [Google Scholar] [CrossRef] [Green Version]
- Ye, W.; Li, X.; Dong, Y.; Peers, P.; Tong, X. Single Image Surface Appearance Modeling with Self-augmented CNNs and Inexact Supervision. Comput. Graph. Forum 2018, 37, 201–211. [Google Scholar] [CrossRef]
- Deschaintre, V.; Aittala, M.; Durand, F.; Drettakis, G.; Bousseau, A. Single-image SVBRDF capture with a rendering-aware deep network. ACM Trans. Graph. 2018, 37, 128. [Google Scholar] [CrossRef] [Green Version]
- Rematas, K.; Ritschel, T.; Fritz, M.; Gavves, E.; Tuytelaars, T. Deep reflectance maps. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4508–4516. [Google Scholar]
- Shi, J.; Dong, Y.; Su, H.; Stella, X.Y. Learning non-lambertian object intrinsics across shapenet categories. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5844–5853. [Google Scholar]
- Li, Z.; Xu, Z.; Ramamoorthi, R.; Sunkavalli, K.; Chandraker, M. Learning to reconstruct shape and spatially-varying reflectance from a single image. In Proceedings of the SIGGRAPH Asia 2018 Technical Papers, Vancouver, BC, Canada, 12–16 August 2018; p. 269. [Google Scholar]
- Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. Nerf: Representing scenes as neural radiance fields for view synthesis. Commun. ACM 2021, 65, 99–106. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Genova, K.; Srinivasan, P.P.; Zhou, H.; Barron, J.T.; Martin-Brualla, R.; Snavely, N.; Funkhouser, T. Ibrnet: Learning multi-view image-based rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 4690–4699. [Google Scholar]
- Paliokas, I.; Patenidis, A.T.; Mitsopoulou, E.E.; Tsita, C.; Pehlivanides, G.; Karyati, E.; Tsafaras, S.; Stathopoulos, E.A.; Kokkalas, A.; Diplaris, S.; et al. A gamified augmented reality application for digital heritage and tourism. Appl. Sci. 2020, 10, 7868. [Google Scholar] [CrossRef]
- Marto, A.; Gonçalves, A.; Melo, M.; Bessa, M. A survey of multisensory VR and AR applications for cultural heritage. Comput. Graph. 2022, 102, 426–440. [Google Scholar] [CrossRef]
- Boss, M.; Braun, R.; Jampani, V.; Barron, J.T.; Liu, C.; Lensch, H. Nerd: Neural reflectance decomposition from image collections. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 12684–12694. [Google Scholar]
- Li, Z.; Sunkavalli, K.; Chandraker, M. Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone Image. arXiv 2018, arXiv:1804.05790. [Google Scholar]
- Cook, R.L.; Torrance, K.E. A reflectance model for computer graphics. ACM Trans. Graph. 1982, 1, 7–24. [Google Scholar] [CrossRef]
- Walter, B.; Marschner, S.R.; Li, H.; Torrance, K.E. Microfacet models for refraction through rough surfaces. In Proceedings of the 18th Eurographics conference on Rendering Techniques, Grenoble, France, 25–27 June 2007; pp. 195–206. [Google Scholar]
- Alldrin, N.; Zickler, T.; Kriegman, D. Photometric stereo with non-parametric and spatially-varying reflectance. In Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008), Anchorage, AL, USA, 24–26 June 2008. [Google Scholar]
- Chen, G.; Dong, Y.; Peers, P.; Zhang, J.; Tong, X. Reflectance scanning: Estimating shading frame and BRDF with generalized linear light sources. ACM Trans. Graph. 2014, 33, 117. [Google Scholar] [CrossRef]
- Xie, J.; Girshick, R.; Farhadi, A. Unsupervised deep embedding for clustering analysis. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 478–487. [Google Scholar]
- Goldman, D.B.; Curless, B.; Hertzmann, A.; Seitz, S.M. Shape and spatially-varying BRDFs from photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1060–1071. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, G.; Peers, P.; Zhang, J.; Tong, X. Appearance-from-motion: Recovering spatially varying surface reflectance under unknown lighting. ACM Trans. Graph. 2014, 33, 193. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, S.; Tong, X.; Snyder, J.; Guo, B. Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Trans. Graph. 2008, 27, 41. [Google Scholar] [CrossRef]
- Matusik, W.; Pfister, H.; Brand, M.; McMillan, L. A Data-Driven Reflectance Model. ACM Trans. Graph. 2003, 22, 759–769. [Google Scholar] [CrossRef] [Green Version]
- Hui, Z.; Sunkavalli, K.; Lee, J.Y.; Hadap, S.; Wang, J.; Sankaranarayanan, A.C. Reflectance capture using univariate sampling of brdfs. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; Volume 2. [Google Scholar]
- Hui, Z.; Sankaranarayanan, A. Shape and Spatially-Varying Reflectance Estimation from Virtual Exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2060. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Dorsey, J.; Rushmeier, H. A sparse parametric mixture model for BTF compression, editing and rendering. Comput. Graph. Forum 2011, 30, 465–473. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Z.; Zhou, K. Simultaneous localization and appearance estimation with a consumer rgb-d camera. IEEE Trans. Vis. Comput. Graph. 2016, 22, 2012–2023. [Google Scholar] [CrossRef]
- Palma, G.; Callieri, M.; Dellepiane, M.; Scopigno, R. A statistical method for SVBRDF approximation from video sequences in general lighting conditions. Comput. Graph. Forum 2012, 31, 1491–1500. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Salakhutdinov, R.; Hinton, G. Deep lambertian networks. In Proceedings of the 29th International Coference on International Conference on Machine Learning, Edinburgh, UK, 26 June–1 July 2012; pp. 1419–1426. [Google Scholar]
- Bell, S.; Bala, K.; Snavely, N. Intrinsic images in the wild. ACM Trans. Graph. 2014, 33, 159. [Google Scholar] [CrossRef]
- Zhou, T.; Krahenbuhl, P.; Efros, A.A. Learning data-driven reflectance priors for intrinsic image decomposition. In Proceedings of the IEEE International Conference on Computer Vision, Washington, DC, USA, 7–13 December 2015; pp. 3469–3477. [Google Scholar]
- Narihira, T.; Maire, M.; Yu, S.X. Direct intrinsics: Learning albedo-shading decomposition by convolutional regression. In Proceedings of the International Conference on Computer Vision, Boston, MA, USA, 8–10 June 2015; p. 2992. [Google Scholar]
- Aittala, M.; Aila, T.; Lehtinen, J. Reflectance modeling by neural texture synthesis. ACM Trans. Graph. 2016, 35, 65. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, T.D.; Whitney, W.F.; Kohli, P.; Tenenbaum, J. Deep convolutional inverse graphics network. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 2539–2547. [Google Scholar]
- Tewari, A.; Zollhofer, M.; Kim, H.; Garrido, P.; Bernard, F.; Perez, P.; Theobalt, C. Mofa: Model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3715–3724. [Google Scholar]
- Taniai, T.; Maehara, T. Neural inverse rendering for general reflectance photometric stereo. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 4864–4873. [Google Scholar]
- Kautz, J.; McCool, M.D. Interactive rendering with arbitrary BRDFs using separable approximations. In Rendering Techniques’ 99; Springer: Berlin/Heidelberg, Germany, 1999; pp. 247–260. [Google Scholar]
- Ashikmin, M.; Premože, S.; Shirley, P. A microfacet-based BRDF generator. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 23–28 July 2000; pp. 65–74. [Google Scholar]
- Schlick, C. An inexpensive BRDF model for physically-based rendering. Comput. Graph. Forum 1994, 13, 233–246. [Google Scholar] [CrossRef]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
- Schwartz, C.; Weinmann, M.; Ruiters, R.; Klein, R. Integrated High-Quality Acquisition of Geometry and Appearance for Cultural Heritage. Proc. VAST 2011, 2011, 25–32. [Google Scholar]
- Sheffer, A.; Lévy, B.; Mogilnitsky, M.; Bogomyakov, A. ABF++: Fast and robust angle based flattening. ACM Trans. Graph. 2005, 24, 311–330. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, J.B.; Jensen, H.W.; Ramamoorthi, R. On optimal, minimal BRDF sampling for reflectance acquisition. ACM Trans. Graph. 2015, 34, 186. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.; Wu, Z.; Mo, Z.; Duan, D.; Yeung, S.K.; Tan, P. A benchmark dataset and evaluation for non-lambertian and uncalibrated photometric stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NE, USA, 27–30 June 2016; pp. 3707–3716. [Google Scholar]
- Ngoc, T.T.; Le Van Dai, C.M.T.; Thuyen, C.M. Support vector regression based on grid search method of hyperparameters for load forecasting. Acta Polytech. Hung. 2021, 18, 143–158. [Google Scholar] [CrossRef]
- Molnar, A.; Lovas, I.; Domozi, Z. Practical Application Possibilities for 3D Models Using Low-resolution Thermal Images. Acta Polytech. Hung. 2021, 18, 199–212. [Google Scholar] [CrossRef]
Object | RMSE of Training Data | RMSE of Test Data | |
---|---|---|---|
Buddha | 9 | 0.0264 | 0.0274 |
Minotaur | 10 | 0.0143 | 0.0141 |
Terracotta | 9 | 0.0091 | 0.0090 |
Object | PSNR | |
---|---|---|
ACLS [27] | DEC | |
Ball | 38.9 | 43.3 |
Bear | 43.1 | 41.4 |
Buddha | 38.2 | 39.2 |
Cat | 43.1 | 43.3 |
Cow | 40.3 | 39.8 |
Goblet | 36.7 | 35.7 |
Harvest | 30.4 | 30.8 |
Pot1 | 45.8 | 48.9 |
Pot2 | 45.6 | 49.2 |
Reading | 27.5 | 29.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.H.; Lee, K.H. Data Driven SVBRDF Estimation Using Deep Embedded Clustering. Electronics 2022, 11, 3239. https://doi.org/10.3390/electronics11193239
Kim YH, Lee KH. Data Driven SVBRDF Estimation Using Deep Embedded Clustering. Electronics. 2022; 11(19):3239. https://doi.org/10.3390/electronics11193239
Chicago/Turabian StyleKim, Yong Hwi, and Kwan H. Lee. 2022. "Data Driven SVBRDF Estimation Using Deep Embedded Clustering" Electronics 11, no. 19: 3239. https://doi.org/10.3390/electronics11193239
APA StyleKim, Y. H., & Lee, K. H. (2022). Data Driven SVBRDF Estimation Using Deep Embedded Clustering. Electronics, 11(19), 3239. https://doi.org/10.3390/electronics11193239