A Recent Approach towards Fluidic Microstrip Devices and Gas Sensors: A Review
Abstract
:1. Introduction
2. Fluidic Coupler, Power Divider, and Phase Shifters
3. Microfluidic Reconfigurable Filters
4. Fluidic Antennas
5. Fluidic-Based SPST Switch
6. Microfluidic Sensors
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ahmad, S.; Paracha, K.N.; Sheikh, Y.N.; Ghaffar, A.; Butt, A.D.; Alibakhshikenari, M.; Soh, P.J.; Khan, S.; Falcone, F. A Metasurface-Based Single-Layered Compact AMC-Backed Dual-Band Antenna for Off-Body IoT Devices. IEEE Access 2021, 9, 159598–159615. [Google Scholar] [CrossRef]
- Chan, K.Y.; Ramer, R.; Mansour, R.R.; Guo, Y.J. 60 GHz to E-Band Switchable Bandpass Filter. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 545–547. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, K.Y.; Rebeiz, G.M. Low-Loss 5.15–5.70-GHz RF MEMS Switchable Filter for Wireless LAN Applications. IEEE Trans. Microw. Theory Tech. 2006, 54, 3931–3939. [Google Scholar] [CrossRef]
- Chan, K.Y.; Fouladi, S.; Ramer, R.; Mansour, R.R. RF MEMS Switchable Interdigital Bandpass Filter. IEEE Microw. Wirel. Compon. Lett. 2012, 22, 44–46. [Google Scholar] [CrossRef]
- Kodera, T.; Caloz, C. Multi-function reconfigurable microwave component based on a switchable FET circuit. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013. [Google Scholar]
- Aboufoul, T.; Alomainy, A.; Parini, C. Reconfiguring UWB Monopole Antenna for Cognitive Radio Applications Using GaAs FET Switches. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 392–394. [Google Scholar] [CrossRef]
- Akowuah, Y.B.; Tchao, E.T.; Ur-Rehman, M.; Khan, M.M.; Ahmad, S. Study of a Printed Split-Ring Monopole for Dual-Spectrum Communications. Heliyon 2021, 7, e07928. [Google Scholar] [CrossRef]
- Khidre, A.; Yang, F.; Elsherbeni, A.Z. A Patch Antenna with a Varactor-Loaded Slot for Reconfigurable Dual-Band Operation. IEEE Trans. Antennas Propag. 2015, 63, 755–760. [Google Scholar] [CrossRef]
- Ahmad, I.; Ullah, S.; Ullah, S.; Habib, U.; Ahmad, S.; Ghaffar, A.; Alibakhshikenari, M.; Khan, S.; Limiti, E. Design and Analysis of a Photonic Crystal Based Planar Antenna for THz Applications. Electronics 2021, 10, 1941. [Google Scholar] [CrossRef]
- Sheikh, Y.A.; Paracha, K.N.; Ahmad, S.; Bhatti, A.R.; Butt, A.D.; Rahim, S.K.A. Analysis of the compact CP/LP Patch antenna design for wearable application. Arab. J. Sci. Eng. 2021, 1, 1–18. [Google Scholar]
- Ghaffar, A.; Awan, W.A.; Hussain, N.; Ahmad, S.; Li, X.J. A Compact SIW-based Flexible Antenna for Applications at 900 and 2450 MHz. Electromagn. Waves (Camb.) 2021, 99, 83–91. [Google Scholar]
- Nikolaou, S.; Bairavasubramanian, R.; Lugo, C.; Carrasquillo, I.; Thompson, D.; Ponchak, G.; Papapolymerou, J.; Tentzeris, M. Pattern and Frequency Reconfigurable Annular Slot Antenna Using PIN Diodes. IEEE Trans. Antennas Propag. 2006, 54, 439–448. [Google Scholar] [CrossRef]
- Ahmad, S.; Ghaffar, A.; Hussain, N.; Kim, N. Compact Dual-Band Antenna with Paired L-Shape Slots for On- and Off-Body Wireless Communication. Sensors 2021, 21, 7953. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Li, L.; Zhai, H. Variational Stability Form for the Capacitance of an Arbitrarily Shaped Conducting Plate. Chin. J. Electron. 2004, 13, 714–718. [Google Scholar]
- Ghosh, S.; Lim, S.A. Multifunctional Reconfigurable Frequency-Selective Surface Using Liquid-Metal Alloy. IEEE Trans. Antennas Propag. 2018, 66, 4953–4957. [Google Scholar] [CrossRef]
- Gough, R.C.; Morishita, A.M.; Dang, J.H.; Hu, W.; Shiroma, W.A.; Ohta, A.T. Continuous Electrowetting of Non-toxic Liquid Metal for RF Applications. IEEE Access 2014, 2, 874–882. [Google Scholar] [CrossRef]
- Entesari, K.; Saghati, A.P. Saghati, Fluidics in Microwave Components. IEEE Microw. Mag. 2016, 17, 50–75. [Google Scholar] [CrossRef]
- Wang, Y.; Yoon, K.-C.; Lee, J.-C. A Frequency Tunable Double Band-Stop Resonator with Voltage Control by Varactor Diodes. J. Electromagn. Eng. Sci. 2016, 16, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.; Saavedra, C.E. Tunable Branchline Coupler Using Microfluidic Channels. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 207–209. [Google Scholar] [CrossRef]
- Jiang, D.; Huang, T.; Shao, Z. Research of Nematic Liquid Crystal Broadband tunable power divider. In Proceedings of the 2014 IEEE International Conference on Communiction Problem-Solving, Beijing, China, 5–7 December 2014. [Google Scholar]
- AliyuBabale, S.; Lawan, S.H.; IfeomaOrakwue, S.; Abdul Rahim, S.K. Implementation of 4 × 4 butler matrix using silver-nono instant inkjet printing technology. In Proceedings of the IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON), Owerri, Nigeria, 7–10 November 2017. [Google Scholar]
- Qaroot, A.; Mumcu, G. Microfluidically Reconfigurable Reflection Phase Shifter. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 684–686. [Google Scholar] [CrossRef]
- Babale, S.A.; Rahim, S.K.; Barro, O.A.; Himdi, M.; Khalily, M. Single Layered 4 × 4 Butler Matrix without Phase-Shifters and Crossovers. IEEE Access 2018, 6, 77289–77298. [Google Scholar] [CrossRef]
- Zaidi, A.M.; Beg, M.T.; Kanaujia, B.K.; Kishor, J.; Rambabu, K. A Novel Dual Band Branch Line Coupler and its Application to Design a Dual Band 4 × 4 Butler Matrix. IEEE Access 2020, 8, 65104–65115. [Google Scholar] [CrossRef]
- Dong, Q.; Wu, Y.; Zheng, Y.; Wang, W.; Liu, Y. A Compact Single-Layer Ultra-Wideband Phase Shifter Using Weakly Coupled Lines. IEEE Access 2019, 7, 12575–12583. [Google Scholar] [CrossRef]
- Babale, S.; Rahim, S.; Himdi, M.; Lawan, S.; Sani, F.; Usman, A. Implementation of inkjet-printed 3 dB coupler with equal power division and 45° output phase difference. Microw. Opt. Technol. Lett. 2020, 63, 1007–1011. [Google Scholar] [CrossRef]
- Palomo, T.; Mumcu, G. Microfluidically Reconfigurable Microstrip Line Combline Filters with Wide Frequency Tuning Capabilities. IEEE Trans. Microw. Theory Tech. 2017, 65, 3561–3568. [Google Scholar] [CrossRef]
- Kataria, T.K.; Osorio, L.; Cervantes, J.L.O.; Ayona, J.R.R.; Corona-Chavez, A. Microfluidic reconfigurable filter based on ring resonators. Prog. Electromagn. Res. 2018, 79, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Lim, D.; Lim, S. Dual-Band Band-Pass Filter with Fixed Low Band and Fluidically-Tunable High Band. Sensors 2017, 17, 1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babale, S.A.; Rahim, S.K.A.; Paracha, K.N.; Orakwue, S.I. 3 dB Branch-Line Coupler with Improved Bandwidth Using PDMS and Zoflex Conductor. Adv. Sci. Lett. 2017, 23, 11378–11381. [Google Scholar] [CrossRef]
- Eom, S.; Memon, M.U.; Lim, S. Frequency-Switchable Microfluidic CSRR-Loaded QMSIW Band-Pass Filter Using a Liquid Metal Alloy. Sensors 2017, 17, 699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdallah, M.; Saavedra, C.E. Fluidically-tuned reflection oscillator at C-Band. In Proceedings of the 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Waterloo, ON, Canada, 19–22 August 2018. [Google Scholar]
- Khan, S.; Vahabisani, N.; Daneshmand, M. A Fully 3-D Printed Waveguide and Its Application as Microfluidically Controlled Waveguide Switch. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 70–80. [Google Scholar] [CrossRef]
- Awang, R.A.; Baum, T.; Nasabi, M.; Sriram, S.; Rowe, W.S.T. Mechanically tolerant fluidic split ring resonators. Smart Mater. Struct. 2016, 25, 075023. [Google Scholar] [CrossRef]
- Romero-Ramirez, M.-A.; Cervantes, J.L.O.; Kataria, T.K.; Corona-Chavez, A. Balanced Reconfigurable Filter Using Liquid Metal. Prog. Electromagn. Res. 2020, 92, 117–124. [Google Scholar] [CrossRef]
- Diedhiou, D.L.; Sauleau, R.; Boriskin, A.V. Microfluidically tunable microstrip filters. IEEE Trans. Microw. Theory Tech. 2015, 63, 2245–2252. [Google Scholar] [CrossRef]
- Gonzalez-Carvajal, E.; Mumcu, G. Frequency and Bandwidth Tunable Mm-Wave Hairpin Bandpass Filters Using Microfluidic Reconfiguration with Integrated Actuation. IEEE Trans. Microw. Theory Tech. 2020, 68, 3756–3768. [Google Scholar] [CrossRef]
- Park, E.; Lee, M.; Lim, S. Switchable Bandpass/Bandstop Filter Using Liquid Metal Alloy as Fluidic Switch. Sensors 2019, 19, 1081. [Google Scholar] [CrossRef] [Green Version]
- Dey, A.; Guldiken, R.; Mumcu, G. Microfluidically Reconfigured Wideband Frequency-Tunable Liquid-Metal Monopole Antenna. IEEE Trans. Antennas Propag. 2016, 64, 2572–2576. [Google Scholar] [CrossRef]
- Murray, C.; Franklin, R.R. Independently Tunable Annular Slot Antenna Resonant Frequencies Using Fluids. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1449–1452. [Google Scholar] [CrossRef]
- Paracha, K.N.; Butt, A.D.; Alghamdi, A.S.; Babale, S.A.; Soh, P.J. Liquid Metal Antennas: Materials, Fabrication and Applications. Sensors 2019, 20, 177. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Lim, S. Planar Inverted-F Antenna (PIFA) Using Microfluidic Impedance Tuner. Sensors 2018, 18, 3176. [Google Scholar] [CrossRef] [Green Version]
- Morishita, A.M.; Dang, J.H.; Gough, R.C.; Ohta, A.T.; Shiroma, W.A. A tunable amplifier using reconfigurable liquid-metal double-stub tuners. In Proceedings of the Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 23–24 April 2015. [Google Scholar]
- Lei, B.J.; Hu, W.; Ohta, A.T.; Shiroma, W.A. A liquid-metal reconfigurable double-stub tuner. In Proceedings of the IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 17–22 June 2012. [Google Scholar]
- Song, L.; Gao, W.; Rahmat-Samii, Y. 3-D Printed Microfluidics Channelizing Liquid Metal for Multipolarization Reconfigurable Extended E-Shaped Patch Antenna. IEEE Trans. Antennas Propag. 2020, 68, 6867–6878. [Google Scholar] [CrossRef]
- Song, L.; Gao, W.; Chui, C.O.; Rahmat-Samii, Y. Wideband Frequency Reconfigurable Patch Antenna with Switchable Slots Based on Liquid Metal and 3-D Printed Microfluidics. IEEE Trans. Antennas Propag. 2019, 67, 2886–2895. [Google Scholar] [CrossRef]
- Borda-Fortuny, C.; Cai, L.; Tong, K.F.; Wong, K.-K. Low-Cost 3D-Printed Coupling-Fed Frequency Agile Fluidic Monopole Antenna System. IEEE Access 2019, 7, 95058–95064. [Google Scholar] [CrossRef]
- Sun, J.; Luk, K. Miniature water monopolar patch antenna using transparent high-permittivity liquid substrate. Electron. Lett. 2020, 56, 475–476. [Google Scholar] [CrossRef]
- Gonzalez, E.; Mumcu, G. Millimeter-Wave Beam-Steering Focal Plane Arrays with Microfluidically Switched Feed Networks. IEEE Trans. Antennas Propag. 2018, 66, 7424–7429. [Google Scholar] [CrossRef]
- Gonzalez, E.; Mumcu, G. Integrated Actuation of Microfluidically Reconfigurable Mm-Wave SPST Switches. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 541–544. [Google Scholar] [CrossRef]
- Dey, A.; Mumcu, G. Microfluidically Controlled Frequency-Tunable Monopole Antenna for High-Power Applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 226–229. [Google Scholar] [CrossRef]
- Chen, C.-H.; Peroulis, D. Liquid RF MEMS Wideband Reflective and Absorptive Switches. IEEE Trans. Microw. Theory Tech. 2007, 55, 2919–2929. [Google Scholar] [CrossRef]
- Wan, Z.; Zeng, H.; Feinerman, A. Reversible Electrowetting of Liquid-Metal Droplet. J. Fluids Eng. 2007, 129, 388–394. [Google Scholar] [CrossRef]
- Armaroli, C.; Ferrario, L.; Giacomozzi, F.; Lorenzelli, L.; Margesin, B.T.; Rangra, K.; Tommaso, G. A silicon-based MEMS technology for electrostatically actuated SPDT RF switches. In Proceedings of the European Space Components Conference, ESCCON, Toulouse, France, 24–27 September 2002. [Google Scholar]
- Moorefield, M.M.; Gough, R.C.; Dang, J.H.; Ohta, A.T.; Shiroma, W.A. A planar liquid-metal shunt switch. In Proceedings of the IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES), Honolulu, HI, USA, 13–18 March 2016. [Google Scholar]
- Sanchez-Escuderos, D.; Ferrando-Bataller, M.; Baquero-Escudero, M.; Herranz, J.I. Reconfigurable Slot-Array Antenna With RF-MEMS. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 721–725. [Google Scholar] [CrossRef]
- González, E.; Mumcu, G. Microfluidic switches with integrated actuation for mm-wave beam-steering arrays. In Proceedings of the IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GE, USA, 7–12 July 2019. [Google Scholar]
- Mendoza, J.; Karabacak, M.; Arslan, H.; Mumcu, G. A Spatially Adaptive Antenna Array for Mm-Wave Wireless Channel Control with Microfluidics Based Reconfiguration. IEEE Access 2020, 8, 182898–182907. [Google Scholar] [CrossRef]
- Yunusa, Z.; Hamidon, M.N.; Kaiser, A.; Awang, Z. Gas Sensors: A Review. Sens. Transducers 2019, 168, 61–75. [Google Scholar]
- Li, F.; Zheng, Y.; Hua, C.; Jian, J. Gas Sensing by Microwave Transduction: Review of Progress and Challenges. Front. Mater. 2019, 6, 101. [Google Scholar] [CrossRef]
- Sayago, I.; Fernández, M.; Fontecha, J.; Horrillo, M.; Vera, C.; Obieta, I.; Bustero, I. New sensitive layers for surface acoustic wave gas sensors based on polymer and carbon nanotube composites. Sens. Actuators B Chem. 2012, 175, 67–72. [Google Scholar] [CrossRef]
- Phan, D.-T.; Chung, G.-S. Surface acoustic wave hydrogen sensors based on ZnO nanoparticles incorporated with a Pt catalyst. Sens. Actuators B Chem. 2012, 161, 341–348. [Google Scholar] [CrossRef]
- Penza, M.; Rossi, R.M.; Alvisi, M.; Aversa, P.; Cassano, G.B.; Suriano, D.; Benetti, M.; Cannata’, D.; Di Pietrantonio, F.; Verona, E. SAW Gas Sensors with Carbon Nanotubes Films. IEEE Ultrason. Symp. 2008, 1850–1853. [Google Scholar]
- Viespe, C.; Grigoriu, C. Surface acoustic wave sensors with carbon nanotubes and SiO2/Si nanoparticles-based nanocomposites for VOC detection. Sens. Actuators B Chem. 2010, 147, 43–47. [Google Scholar] [CrossRef]
- Park, J.-K.; Kang, T.-G.; Kim, B.-H.; Lee, H.-J.; Choi, H.H.; Yook, J.-G. Real-time Humidity Sensor Based on Microwave Resonator Coupled with PEDOT: PSS Conducting Polymer Film. Sci. Rep. 2018, 8, 439. [Google Scholar] [CrossRef] [Green Version]
- Wiltshire, B.D.; Zarifi, M.H. 3-D Printing Microfluidic Channels with Embedded Planar Microwave Resonators for RFID and Liquid Detection. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 65–67. [Google Scholar] [CrossRef]
- Bogner, A.; Steiner, C.; Walter, S.; Kita, J.; Hagen, G.; Moos, R. Planar Microstrip Ring Resonators for Microwave-Based Gas Sensing: Design Aspects and Initial Transducers for Humidity and Ammonia Sensing. Sensors 2017, 17, 2422. [Google Scholar] [CrossRef]
- Velez, P.; Grenier, K.; Mata-Contreras, J.; Dubuc, D.; Martin, F. Highly-Sensitive Microwave Sensors Based on Open Complementary Split Ring Resonators (OCSRRs) for Dielectric Characterization and Solute Concentration Measurement in Liquids. IEEE Access 2018, 6, 48324–48338. [Google Scholar] [CrossRef]
- Bailly, G.; Harrabi, A.; Rossignol, J.; Michel, M.; Stuerga, D.; Pribetich, P. Microstrip Spiral Resonator for Microwave-Based Gas Sensing. IEEE Sens. Lett. 2017, 1, 1–4. [Google Scholar] [CrossRef]
- Abduljabar, A.A.; Clark, N.; Lees, J.; Porch, A. Dual Mode Microwave Microfluidic Sensor for Temperature Variant Liquid Characterization. IEEE Trans. Microw. Theory Tech. 2017, 65, 2572–2582. [Google Scholar] [CrossRef] [Green Version]
- Abdolrazzaghi, M.; Daneshmand, M.; Iyer, A.K. Strongly Enhanced Sensitivity in Planar Microwave Sensors Based on Metamaterial Coupling. IEEE Trans. Microw. Theory Tech. 2018, 66, 1843–1855. [Google Scholar] [CrossRef] [Green Version]
- Yunusa, Z.; Hamidon, M.N.; Ismail, A.; Isa, M.M.; Yaacob, M.H.; Rahmanian, S.; Ibrahim, S.A.; Shabaneh, A.A. Development of a hydrogen gas sensor using a double SAW resonator system at room temperature. Sensors 2015, 15, 4749–4765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahoumina, P.; Hallil, H.; Lachaud, J.; Abdelghani, A.; Frigui, K.; Bila, S.; Baillargeat, D.; Ravichandran, A.; Coquet, P.; Paragua, C.; et al. Microwave flexible gas sensor based on polymer multi wall carbon nanotubes sensitive layer. Sens. Actuators B Chem. 2017, 249, 708–714. [Google Scholar] [CrossRef]
- Bahoumina, P.; Hallil, H.; Lachaud, J.-L.; AbdelGhani, A.; Frigui, K.; Bila, S.; Baillargeat, D.; Zhang, Q.; Coquet, P.; Paragua, C.; et al. Chemical Gas Sensor Based on a Flexible Capacitive Microwave Transducer Associated with a Sensitive Carbon Composite Polymer Film. Proceedings 2017, 1, 439. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Cheng, M.M.C.; Chen, J.C.M.; Wu, C.T.M. Microwave gas sensor based on graphene-loaded substrate integrated waveguide cavity resonator. In Proceedings of the IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016. [Google Scholar]
- Ni, D.; Ravi, A.; Kumar, K.B.V.; Lal, A. A mechanically tunable GHz passive voltage element using microstrip resonator. J. Phys. Conf. Ser. 2019, 1407, 012051. [Google Scholar] [CrossRef]
- Kim, H.K.; Lee, D.; Lim, S. A fluidically tunable metasurface absorber for flexible large-scale wireless ethanol sensor applications. Sensors 2016, 16, 1246. [Google Scholar] [CrossRef] [Green Version]
- Salim, A.; Lim, S. Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor. Sensors 2016, 16, 1802. [Google Scholar] [CrossRef] [Green Version]
- Majhi, S.M.; Mirzaei, A.; Kim, H.W.; Kim, S.S.; Kim, T.W. Recent advances in energy-saving chemiresistive gas sensors: A review. Nano Energy 2021, 79, 105369. [Google Scholar] [CrossRef]
- Kohl, D. Function and applications of gas sensors. J. Phys. D Appl. Phys. 2001, 34, 19. [Google Scholar] [CrossRef]
- Nour, M.; Hussain, M. A Review of the Real-Time Monitoring of Fluid-Properties in Tubular Architectures for Industrial Applications. Sensor 2020, 20, 3907. [Google Scholar] [CrossRef] [PubMed]
- Kwak, D.; Lei, Y.; Maric, R. Ammonia gas sensors: A comprehensive review. Talanta 2019, 204, 713–730. [Google Scholar] [CrossRef] [PubMed]
References | Fluid Material/Substrate | Technique/Type | Band | Application | Advantage | Disadvantage |
---|---|---|---|---|---|---|
[19] | Rogers’ RO4003 | Tunable branchline coupler | 1.8–2.29 GHz | Microfluidic application | Reconfigurability/power combiner/simple design | Need to improve the errors, coupler mismatching |
[20] | Nematic liquid crystal | Inverted microstrip line with loaded split-ring resonator (SRR) | C band | Power coupler | Low loss, easy integration with other circuits RL > 24 dB IL = 3 dB | Susceptible to environment change and EM radiation |
[21] | Polyethylene terephthalate (PET) | Low-cost inkjet printing technique | 6 GHz | Phase shifters/4 × 4 Butler matrix (BM) for wearable applications | High isolation and return loss/RL. 19 dB IL. 0 dB 90-degree phase shifted | Susceptible to environment change and EM radiation |
[22] | PDMS and SMP prepared from Rogers RO4003C sandwiched in b/w microfluidic and the reflective microstrip terminations line | Microfluidic techniques | x-band | Microfluidically reconfigurable reflection phase shifter | Low loss and high power-handling capability/360° phase shifted, RL. 20 dB, IL. 0.95 dB | Not miniaturized/susceptible to environment change and EM radiation |
[23] | Rogers’ RO3003 | Microstrip hybrid modified coupler | 6 GHz | 4-by-4 Butler matrix for future 5G | Stable beam-scanning, Couplers having 45° Phase difference/ RL: 25.6 dB 45° PS | Complex issues involved in the design of Butler matrix |
[24] | Rogers 5870 | Modified PI-shaped transmission lines (TL) | 1 and 2.85 GHz | Dual-band branchline coupler and 4 × 4 Butler matrix | Compact size, simple design, | Not UWB/large size/Susceptible to environment change and EM radiation |
[25] | RO4350B substrate | Miniaturization | 1.36 to 4.53 GHz | Phase shifter used in mobile communication systems | Compatible to integrated communication systems./Suitable agreement with the EM simulation/ultrawideband/miniaturized/ RL. 20 dB, IL. 1.25 dB | - |
[26] | Transparent polyethylene terephthalate (PTE) | Instant inkjet printing silver nano | 5.09 to 6.97 GHz | Inkjet-printed 3 dB coupler | Fast prototyping of electronic circuitries RL = −28 dB | Narrowband/susceptible to environment change and EM radiation |
Reference | Fluidic Material/Substrate | Frequency (GHz) | Technique/Filter Type | Applications | Advantage | Disadvantage |
---|---|---|---|---|---|---|
[27] | 3 M FC-40/Rogers 6010.2 and PDMS | 4 to 1.5 GHz | microstrip line comb-line filters | 4th-order filter | Reconfigurability/high tunable-frequency range/IL = 3 dB and RL = 9.5 dB, power-handling capacity = 15 W | Susceptible to environment change and EM radiation |
[28] | Eutectic gallium indium liquid metal mixed up with sodium hydroxide/Rogers UL2000 | 1, 1.4, and 1.8 GHz | Metal liquid switches and dual-mode ring resonators | RF filters | Reconfigurability/IL = 0.47–0.68 dB | Need of biasing/temperature sensitive |
[29] | eutectic gallium indium (EGaIn)/Roger Duroid 5880 | Lower band = 1.85 GHz, Higher band = 3.06–2.95 GHz | Split-ring resonator | Dual-band bandpass filter | Fluidically tunable/dual mode/ IL ≤ 2.72 and < 3.21 | Need of biasing/temperature sensitive |
[30] | Zoflex conductor/PDMS | 6 GHz | Planar microstrip circuit | 3 dB-branchline coupler | Bandwidth is wider than single conventional coupler/RL and isolation >18 dB, IL > 4 dB | Need of biasing/temperature sensitive |
[31] | Eutectic gallium indium (EGaIn)/Roger 5880 and PDMS | 2.205 to 2.56 GHz | CSRR/QMSIW | Bandpass filter | Switchable frequency/ RL > 15 dB, IL < 1.5 dB | Need of biasing/temperature sensitive |
[32] | Distilled water | C band | SIW | Fluidic tuning of microwave oscillators | Frequency tuning/tuned over a 110 MHz band | Need of biasing/temperature sensitive |
[33] | Eutectic gallium indium (EGaIn)/thermoplastic acrylonitrile butadiene styrene | K band | Using multiline technique | Microfluidically controlled waveguide switch | Low cost, lightweight, RL > 15 dB IL = 0.5 dB | Temperature sensitive |
[35] | Sodium hydroxide (NAOH)/Roger RT 5880 | S band | Microstrip | 3rd-order bandpass filter | Reconfigurability/ RL < 40 dB IL = 1.67–2.17 dB | Temperature sensitive |
[37] | (fused silica, perylene, and FC-400)/Roger RO4003C | 28 Gto 41 GHz | Microstrip | Tunable mm-wave bandpass filter | Reconfigurability/low loss/high power-handling capacity IL = 1.9–3.1 dB | Need of biasing/temperature sensitive |
References | Fluidic Material/Substrate | Bands | Techniques/Antenna Type | Applications | Advantages | Disadvantages |
---|---|---|---|---|---|---|
[38] | EGaIn/PDMS/Roger RT Duroid 5880 | 2.5 GHz | Liquid metal alloy as fluidic switch | Switchable bandpass/bandstop filter | Low cost, no need of biasing, high temperature sensitivity, RL > 15 dB, IL = 0.5 dB | - |
[39] | Low-loss Teflon/(PDMS + liquid crystal polymer + Roger 5880) | 1.29 to 5.17 GHz | Microfluidical reconfiguration | Micropump driving circuit, microcontroller | Miniaturized, tuneable array | Susceptible to certain applications that require compact size |
[40] | (Air + acetone + DI water)/FR-4 | 3.3–4.2 GHz for 1st band, 5.2–8 GHz for 2nd band | Surface-integrated fluidic channel | Channel placement locations | - | Susceptible to environmental change |
[42] | PDMS/Rogers RT/Duroid 5880 | 900 MHz | PIFA | Piezo electric-micropump | Perfect impedance matching | Susceptible to the environment |
[43] | PTFE, polyimide, Galinstan, Rogers RT/Duroid 5880/ | 3.37 to 6.02 GHz | Continuous electrowetting (CEW)/liquid metal slugs | Frequency-tuneable amplifier | The amplifier can be tuned with higher precision | - |
[44] | Polystyrene/Roger RT/DUROID 5870 | 3.275 GHz | Liquid metal reconfigurable double stub tuner | Automated pumping and tuning mechanism | High tuning resolution | With high resolution, input impedance beyond 75 points |
[45] | PTFE, RT5880 PCB | 2.4 GHz | 3D-printed microstrip | Tuning and switching mechanisms | Multiploidizations, highly effective, reconfigurability | - |
[46] | Optical clear acrylic (Veroclear)/Rogers RT/Duroid 5880/ | 2–2.5 GHz | Microstrip slotted patch antenna | 3D printing | Wideband/switchable/high resolution/reusable | More transition time |
[47] | (NaCl + KCl)/FR-4 | 3.2 to 5 GHz | Closed-loop system/microstrip feedline | Multiple communications/3D-printed fluidic antenna | Low loss, low cost, reconfigurable, efficient, | Not flexible |
[48] | Water patch antenna/ethyl acetate | 1.9 GHz | Monopolar patch with high-permittivity substrate | Optically transparent | Low cost, miniaturized, transparent, ease of access, flexible | Less efficient |
References | Fluid/Substrate | Band | Technique/Antenna Type | Applications | Advantages | Disadvantages |
---|---|---|---|---|---|---|
[49] | Roger RO4003C | Ka-band | Microfluidic reconfigurable | Piezoelectric micropump actuation | Closed loop, reconfigurability, position sensing IL < 0.2 dB | Toxic for the environment |
[50] | (SU-82075 Microchem + parylene)/ Roger RO4003C | 22 to 40 GHz | Microfluidic microstrip | SPST reconfigurable switch | Low loss, wideband, high reliability, low reconfiguration time, superior power-handling capacity/ IL = 0.42 dB, isolation > 20 | SPST switch performance is not so good, not closed loop |
[51] | FC-40, benzocuclobutane (BCB)/PDMS, RO4003C | 1.7–3.5 GHz | Microfluidically tunable monopole antenna | Piezoelectric micropumps-based SPST switch | High RF power, highly efficient, tunable | Not closed loop |
[52] | Teflon/galinstan solution/PDMS | 20–100 GHz | Coplanar waveguide technique | MEMS switch | Very wideband, nontoxic for the environment, IL < 1.3 dB Isolation > 20 dB | - |
[55] | PTFE, polyimide, polystyrene | 4–16 GHz | Coplanar waveguide technique | Shunt switch | Low power, wideband, IL < 5 dB, Is > 10 dB | Toxic for the environment |
[57] | Low-loss liquid FC-40/RO4003C | 30 GHz | Four elements millimeter-wave beam-steering antenna array | Microfluidic switches | Less actuation time, low loss, high power-handling capacity/IL < 0.9 dB, isolation < 18 dB | |
[58] | FC-40/RO4003C | 28GHz | Microfluidically reconfigurable spatially adaptive antenna array (MRSA) | Millimeter-wave wireless channel control systems | High gain, reconfigurability, long microfluidic channel, | Slightly misalignment in fabrication |
References | Fluid/Substrate | Bands | Techniques | Applications | Advantages | Disadvantages |
---|---|---|---|---|---|---|
[61] | Polymer, carbon nanotube/ST X-CUT quartz substrate | 157 MHz | Mass flow controller and photolithography | SAW gas sensor | Highly responsive to volatile gases, IL = 15 dB, attenuation = 9 dB | Only detect limited gases |
[62] | ZnO nanoparticles/Pt catalyst | 129.28 MHz for uncoated, 126.93 and 128.85 MHz for coated | Post-annealing process | SAW hydrogen sensor | Suitable repeatability and stability, largest frequency shift | Sensitivity may vary by temperature, material and area of SAW sensor |
[63] | Carbon nanotube, ST-cut quartz substrate | 433.93 and 915 MHz | Langmuir-Blodgett (LB) | Multiwalled SAW gas sensor | Low cost, highly gas sensitive | Sensitivity may vary by area of SAW sensor |
[64] | Polyethyleneimine (PEI), ST-cut quartz substrate | 69.4 MHz | Nanotubes | SAW nanocomposite-based sensors | Reduced noise level, better time response, highly gas sensitive | Sensitivity may vary by area of SAW sensor |
[65] | Conducting polymer, polystyrene sulfonate/printed circuit board (PCB) substrate | 2.45 GHz | Double slip ring resonators (DSRR) | Humidity sensor | Outstanding repeatable response | Sensitivity may vary by material and the area of the humidity sensor |
[66] | Polymer/Rogers RT5880 and ULTRALUM 3850 substrates | 5.3 and 5.8 GHz | 3D-printing microfluidic channel | RFID and liquid detection | High accuracy, sensitivity, affordable, reusable, environment friendly | Minimum detectable concentration toward ethanol-water mixture |
[67] | Fe-Zeolite, alumina/RO4003C substrate | 8.5 GHz | Planar microstrip ring resonators | Humidity and ammonia sensing | miniaturized, high accuracy, sensitivity | Sensitivity may wary with material |
[68] | PDMS, polyester/FR-4 | 0.9 GHz | Open complementary slip ring resonators (OCSRR) and cross mode insertion loss | Differential permittivity sensors | Very sensitive to asymmetric loadings, highly sensitive | Less sensitive to symmetric loadings |
[69] | Ceramic-filled PTFE/ Roger RT6202 substrate | 1–8 GHz | Microstrip spiral resonator | Microwave-based ammonia gas sensor | Suitable reversibility and sensitivity | Limited sensitivity |
[70] | Water, chloroform/Roger 5870 | 2.5 and 2.65 GHz | Quarter ring microstrip | Dual-band microwave microfluidic sensor | Temperature variant, overall loss decreases by increasing temperature | Limited sensitivity |
[71] | Roger 5880 substrate | 2.5–2.6 GHz | Metamaterial | MTM-infused MW sensor | High gain, negligible loss of power, large invariant coupling level | Less sensitive to low permittivity materials |
[72] | Platinum, zirconium, GaPO4 layers on PCB | 433.42 to 433.92 MHz | Double SAW resonator system | Hydrogen gas sensor | Insensitive to vibrations and other external disturbance | Limited sensitivity |
[73] | Polymer/Kapton flexible substrate | 0–6 GHz | Inkjet printing | Low coat MW flexible gas sensor | Harmful gas detection, for IoT applications, low power consumption | Less sensitive |
[74] | Carbon nanotube, carbon composite polymer, flexible paper substrate | 1–6 GHz | Inkjet printing | IoT, inkjet-printed chemical gas sensor | Low cost, multiwall, highly effective surface area | Limited sensitivity |
[75] | PCB RO4350B | 4.2 GHz | SIW cavity resonators, CSRR | Microwave gas sensor, ammonia gas detection | Low cost, highly sensitive, environment monitory solutions | Sensitivity may wary with material |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babale, S.A.; Paracha, K.N.; Ahmad, S.; Abdul Rahim, S.K.; Yunusa, Z.; Nasir, M.; Ghaffar, A.; Lamkaddem, A. A Recent Approach towards Fluidic Microstrip Devices and Gas Sensors: A Review. Electronics 2022, 11, 229. https://doi.org/10.3390/electronics11020229
Babale SA, Paracha KN, Ahmad S, Abdul Rahim SK, Yunusa Z, Nasir M, Ghaffar A, Lamkaddem A. A Recent Approach towards Fluidic Microstrip Devices and Gas Sensors: A Review. Electronics. 2022; 11(2):229. https://doi.org/10.3390/electronics11020229
Chicago/Turabian StyleBabale, Suleiman Aliyu, Kashif Nisar Paracha, Sarosh Ahmad, Sharul Kamal Abdul Rahim, Zainab Yunusa, Muhammad Nasir, Adnan Ghaffar, and Abdenasser Lamkaddem. 2022. "A Recent Approach towards Fluidic Microstrip Devices and Gas Sensors: A Review" Electronics 11, no. 2: 229. https://doi.org/10.3390/electronics11020229
APA StyleBabale, S. A., Paracha, K. N., Ahmad, S., Abdul Rahim, S. K., Yunusa, Z., Nasir, M., Ghaffar, A., & Lamkaddem, A. (2022). A Recent Approach towards Fluidic Microstrip Devices and Gas Sensors: A Review. Electronics, 11(2), 229. https://doi.org/10.3390/electronics11020229