The Structural and Dielectric Properties of Bi3−xNdxTi1.5W0.5O9 (x = 0.25, 0.5, 0.75, 1.0)
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aurivillius, B. Mixed Bismuth Oxides with Layer Lattices: I. Structure Type of CaBi2B2O9. Arkiv Kemi 1949, 54, 463–480. [Google Scholar]
- Aurivillius, B. Mixed Bismuth Oxides with Layer Lattices: II. Structure Type of Bi4Ti3O12. Arkiv Kemi 1949, 58, 499–512. [Google Scholar]
- Aurivillius, B. Mixed Bismuth Oxides with Layer Lattices: III. Structure Type of BaBi4Ti4O15. Arkiv Kemi 1950, 37, 512–527. [Google Scholar]
- Smolensky, G.A.; Isupov, V.A.; Agranovskaya, A. New ferroelectric PbBi2Nb2O9. FTT 1959, 1969. (In Russian) [Google Scholar]
- Ismayilzade. X-ray study of the structure of some new ferroelectrics with a layered structure. Izv. AN SSSR 1960, 24, 1198–1202. (In Russian) [Google Scholar]
- Aurivillius, B. Ferroelectricity in the compound BaBi4Ti5O18. Phys. Rev. 1962, 12, 6893–6896. [Google Scholar]
- Subbarao, E.C. Crystal chemistry of mixed bismuth oxides with layer-type structure. Am. Ceram. Soc. 1962, 45, 166. [Google Scholar] [CrossRef]
- Subbarao, E.C. Ferroelectricity in Mixed Bismuth Oxides with Layered-Type Structure. Chem. Phys. 1961, 34, 695. [Google Scholar]
- Subbarao, E.C. A Family of Ferroelectric Bismuth Compounds. Phys. Chem. Solids 1962, 23, 665–676. [Google Scholar] [CrossRef]
- Subbarao, E.C. Ferroelectricity in BiTi3O12 and its solid solutions. Phys. Rev. 1961, 122, 804–807. [Google Scholar] [CrossRef]
- Isupov, V.A. Crystal chemical aspects of the bismuth–containing layered compounds of the Am−1Bi2BmO3m−3type. Ferroelectrics 1996, 189, 211–217. [Google Scholar] [CrossRef]
- Reznichenko, L.A.; Razumovskaya, O.N.; Shilkina, L.A.; Dergunova, N.V. On the relationship between the Curie temperature and the crystal-chemical characteristics of ions included in Bi-containing compounds. Inorg. Mater. 1996, 32, 474–481. (In Russian) [Google Scholar]
- Isupov, V.A. Anomalies in the properties of layered ferroelectrics Bi2Am−1BmO3m+3. Inorg. Mater. 2006, 421, 353–1359. (In Russian) [Google Scholar]
- Zubkov, S.V.; Vlasenko, V.G. Crystal structure and dielectric properties of layered perovskite-like solid solutions Bi3–xYxTiNbO9 (x = 0.0, 0.1, 0.2, 0.3) with high Curie temperature. Phys. Solid State 2017, 59, 2325. [Google Scholar] [CrossRef]
- Zubkov, S.V.; Shevtsova, S.I. Crystal Structure and Dielectric Properties of Layered Perovskite-Like Solid Solutions Bi3−xLuxTiNbO9 (x = 0, 0.05, 0.1) with High Curie Temperature. Adv. Mater. 2020, 173–182. [Google Scholar] [CrossRef]
- Zarubin, I.A.; Vlasenko, V.G.; Shuvaev, A.T. Structure and dielectric properties of Bi5Sr(TiNb3)1−xBxO18 (0 < x ≤ 0.25; B = Sb, V, Re) layered perovskite-like solid solutions. Inorg. Mater. 2009, 45, 555. [Google Scholar]
- Vlasenko, V.G.; Shuvaev, A.T.; Zarubin, I.A.; Vlasenko, E.V. Dielectric relaxation in layered oxides of the Aurivillius phase family. Phys. Solid State 2010, 52, 744. [Google Scholar] [CrossRef]
- Gai, Z.G.; Zhao, M.L.; Su, W.B.; Wang, C.L.; Liu, J.; Zhang, J.L. Influences of ScTa co-substitution on the properties of Ultra-high temperature Bi3TiNbO9-based piezoelectric ceramics. J. Electroceramic 2013, 31, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Bekhtin, M.A.; Bush, A.A.; Kamentsev, K.E.; Segalla, A.G. Preparation and dielectric and piezoelectric properties of Bi3TiNbO9, Bi2CaNb2O9, and Bi2.5Na0.5Nb2O9 ceramics doped with various elements. Inorg. Mater. 2016, 52, 557. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, H.; Dong, X.; Wang, Y. Preparation and electrical properties of bismuth layer-structured ceramic Bi3NbTiO9 solid solution. Mater. Res. Bull. 2003, 38, 241. [Google Scholar] [CrossRef]
- Ando, A.; Kimura, M.; Sakabe, Y. Piezoelectric Properties of Ba and Ca Doped SrBi2Nb2O9 Based Ceramic Materials. Appl. Phys. 2003, 42, 520. [Google Scholar]
- Hou, R.Z.; Chen, X.M. Synthesis and Dielectric Properties of Layer-structured Compounds An−3Bi4TinO3n+3 (A = Ba, Sr, Ca) with n > 4. Mater. Res. 2005, 20, 2354. [Google Scholar] [CrossRef]
- Hou, R.Z.; Chen, X.M. La3+ Substitution in Four-layers Aurivillius Phase SrBi4Ti4O15. Solid State Commun. 2004, 130, 469. [Google Scholar] [CrossRef]
- Noguchi, Y.; Miwa, I.; Goshima, Y.; Miyayama, M. Defect Control for Large Remanent Polarization in Bismuth Titanate Ferroelectrics Doping Effect of Higher-Valent Cations. Appl. Phys. 2000, 39, 1259. [Google Scholar] [CrossRef]
- Yao, Y.Y.; Song, C.H.; Bao, P.; Su, D.; Lu, X.M. Doping effect on the dielectric property in bismuth titanate. Appl. Phys. 2004, 95, 3126. [Google Scholar] [CrossRef]
- Newnham, R.E.; Wolfe, R.W.; Dorrian, J.F. Structural basis of ferroelectricity in the bismuth titanate family. Mater. Res. Bull. 1971, 6, 1029–1039. [Google Scholar] [CrossRef]
- Moure, A.; Pardo, L.; Alemany, C.; Millan, P.; Castro, A. Piezoelectric ceramics based on Bi3TiNbO9 from mechanochemically activated precursors. Eur. Ceram. 2001, 21, 1399. [Google Scholar] [CrossRef]
- Zubkov, S.V.; Vlasenko, V.G.; Shuvaeva, V.A. Structure and dielectric properties of solid solutions Bi7Ti4+xWxNb1−2xO21 (x = 0–0.5). Phys. Solid State 2015, 57, 900. [Google Scholar]
- Rajashekhar, G.; Sreekanth, T.; Ravikiran, U. Dielectric properties of Na and Pr doped SrBi4Ti4O15ceramics. Mater. Today 2020, 33, 5467–5470. [Google Scholar]
- Zubkov, S.V.; Vlasenko, V.G.; Shuvaeva, V.A.; Shevtsova, S.I. Structure and dielectric properties of solid solutions Bi7Ti4+xWxTa1–2xO21 (x = 0–0.5). Phys. Solid State 2016, 58, 42. [Google Scholar] [CrossRef]
- Rizwana; Sarah, P. Dielectric, Ferroelectric and Piezoelectric Properties of Sr0.8Na0.1Nd0.1Bi4Ti4O15 Prepared by Sol Gel and Solid State Technique. Ferroelectrics 2014, 467, 181–193. [Google Scholar] [CrossRef]
- Fang, W.; Zhao, H.; Jia, T.; Fu, Q.; Xu, C.; Tao, H.; Weng, J.; Wang, S.; Ma, Z. Effects of La and Ni doping on ferroelectric and photocatalytic properties of Aurivillius Bi7Ti3Fe3O21. Solid-State Electron. 2021, 186, 108170. [Google Scholar] [CrossRef]
- Dahake, K.; Jain, P.; Subohi, O. Impedance spectroscopy, dielectric, ferroelectric and electrical transport properties of Ba-doped Bi3TiNbO9 ceramics. J. Mater. Sci. Mater. Electron. 2021, 32, 26770. [Google Scholar] [CrossRef]
- Xi, J.; Xing, J.; Chen, H.; Zhang, F.; Chen, Q.; Zhang, W.; Zhu, J. Crystal structure and electrical properties of Li/Mn co-doped NBT-based Aurivilliustype ceramics. Alloys Compd. 2021, 868, 159216. [Google Scholar] [CrossRef]
- Rehman, F.; Li, J.-B.; Ahmad, I.; Jin, H.B.; Ahmad, P. Dielectric relaxation and electrical properties of Bi2.5Nd0.5Nb1.5Fe0.5O9 ceramics. Mater. Chem. Phys. 2019, 226, 100. [Google Scholar] [CrossRef]
- Bartkowska, J.A.; Bochenek, D. Dielectric relaxation of manganese modified Bi6Fe2Ti3O18 Aurivillius type ceramics. Arch. Metall. Mater. 2019, 64, 221. [Google Scholar]
- Cheng, Z.X.; Wang, X.L. A way to enhance the magnetic moment of multiferroic bismuth Ferrite. J. Phys. D 2010, 43, 242001. [Google Scholar] [CrossRef]
- Sengupta, P.; Sadhukhan, P.; Ray, A.; Mal, S.; Singh, A.; Ray, R.; Bhattacharyya, S.; Das, S. Influence of activation energy on charge conduction mechanism and giant dielectric relaxation of sol-gel derived C3H7NH3PbBr3 perovskite; Act as high performing UV photodetector. Alloys Compd. 2021, 892, 162216. [Google Scholar] [CrossRef]
- Zdorovets, M.; Kozlovskiy, A.; Arbuz, A.; Tishkevich, D.; Zubar, T.; Trukhanov, A. Phase transformations and changes in the dielectric properties of nanostructured perovskite-like LBZ composites as a result of thermal annealing. Ceram. Int. 2020, 46, 14460. [Google Scholar] [CrossRef]
- Long, C.; Chang, Q.; Wu, Y.; He, W.; Li, Y.; Fan, H. New layer-structured ferroelectric polycrystalline materials, Na0.5NdxBi4.5−xTi4O15: Crystal structures, electrical properties and conduction behaviors. Mater. Chem. C 2015, 3, 8852. [Google Scholar]
- Sengupta, P.; Sadhukhan, P.; Ray, A.; Ray, R.; Bhattacharyya, S.; Das, S. Temperature and frequency dependent dielectric response of C3H7NH3PbI3: A new hybrid perovskite. J. Appl. Phys. 2020, 127, 204103. [Google Scholar] [CrossRef]
- Kozlovskiy, A.L.; Kenzhina, I.E.; Zdorovets, M.V.; Saiymova, M.; Tishkeviche, D.I.; Trukhanov, S.V.; Trukhanov, A.V. Synthesis, phase composition and structural and conductive properties of ferroelectric microparticles based on ATiOx (A = Ba, Ca, Sr). Ceram. Int. 2019, 45, 17236. [Google Scholar] [CrossRef]
- Zubkov, S.V. Structure and dielectric properties of solid solutions Bi7−2xNd2xTi4NbO21 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0). Adv. Dielectr. 2021, 11, 2160018. [Google Scholar] [CrossRef]
- Kraus, W.; Nolze, G. PowderCell for Windows, Version 2.3; Federal Institute for Materials Research and Testing: Berlin, Germany, 1999.
- Goldschmidt, V.M. Geochemische Verteilungsgesetze der Elemente; Norske: Oslo, Norway, 1927. [Google Scholar]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751. [Google Scholar] [CrossRef]
Compounds | a0, Å | b0, Å | c0, Å | V, Å3 | c′, Å | at, % | δc′, % | δb0, % |
---|---|---|---|---|---|---|---|---|
Bi2.75Nd0.25Ti1.5W0.5O9 | 5.3861 | 5.3742 | 24.8572 | 719.51 | 3.7586 | 3.8043 | −1.2 | −0.2 |
Bi2.5Nd0.5 Ti1.5W0.5O9 | 5.3916 | 5.3742 | 24.8421 | 719.81 | 3.7263 | 3.8063 | −2.1 | −0.3 |
Bi2.25Nd0.75 Ti1.5W0.5O9 | 5.3977 | 5.3875 | 24.8388 | 722.31 | 3.7258 | 3.8131 | −2.28 | −0.18 |
Bi2 NdTi1.5W0.5O9 | 5.4013 | 5.3903 | 24.8388 | 723.17 | 3.7248 | 3.8154 | −2.28 | −0.2 |
Compounds | TC, °C | d33, pC/N | t | ε/ε0(T) (at 100 kHz) | E1/E2/E3, eV |
---|---|---|---|---|---|
Bi2.75Nd0.25Ti1.5W0.5O9 | 681 | 10 | 0.9778 | 1000 | 0.67/0.29/0.06 |
Bi2.5Nd0.5 Ti1.5W0.5O9 | 637 | 5 | 0.9745 | 500 | 0.77/0.31/0.1 |
Bi2.25Nd0.75 Ti1.5W0.5O9 | 617 | 3.5 | 0.9713 | 550 | 0.65/0.21 |
Bi2 NdTi1.5W0.5O9 | 165 | 0 | 0.9681 | 160 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubkov, S.V.; Parinov, I.A.; Kuprina, Y.A. The Structural and Dielectric Properties of Bi3−xNdxTi1.5W0.5O9 (x = 0.25, 0.5, 0.75, 1.0). Electronics 2022, 11, 277. https://doi.org/10.3390/electronics11020277
Zubkov SV, Parinov IA, Kuprina YA. The Structural and Dielectric Properties of Bi3−xNdxTi1.5W0.5O9 (x = 0.25, 0.5, 0.75, 1.0). Electronics. 2022; 11(2):277. https://doi.org/10.3390/electronics11020277
Chicago/Turabian StyleZubkov, Sergei V., Ivan A. Parinov, and Yulia A. Kuprina. 2022. "The Structural and Dielectric Properties of Bi3−xNdxTi1.5W0.5O9 (x = 0.25, 0.5, 0.75, 1.0)" Electronics 11, no. 2: 277. https://doi.org/10.3390/electronics11020277
APA StyleZubkov, S. V., Parinov, I. A., & Kuprina, Y. A. (2022). The Structural and Dielectric Properties of Bi3−xNdxTi1.5W0.5O9 (x = 0.25, 0.5, 0.75, 1.0). Electronics, 11(2), 277. https://doi.org/10.3390/electronics11020277