FFSCN: Frame Fusion Spectrum Center Net for Carrier Signal Detection
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Data Preprocessing
3.2. FFSCN Architecture
3.2.1. Network Backbones
3.2.2. The FPN Neck
3.2.3. The Regression Network Head
3.3. FFSCN Targets and Loss Function
4. Experiments
4.1. Dataset Description
4.2. Training Setup
4.3. Evaluation Metrics
4.4. Results
4.5. Ablation Study
4.5.1. Impact of the Two Adaptive Pooling Layer Types
4.5.2. Impact of Downsample Times
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ian, F.; Brandon, F.; Ravikumar, B. Cooperative spectrum sensing in cognitive radio networks: A survey. Phys. Commun. 2011, 4, 40–62. [Google Scholar]
- Ian, F.; Won-Yeol, L.; Kaushik, R. CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Netw. 2009, 7, 810–836. [Google Scholar]
- Digham, F.F.; Alouini, M.-S.; Simon, M.K. On the energy detection of unknown signals over fading channels. IEEE Trans. Commun. 2007, 55, 21–24. [Google Scholar]
- Urkowitz, H. Energy detection of unknown deterministic signals. Proc. IEEE 1967, 55, 523–531. [Google Scholar] [CrossRef]
- Zhi, Q.; Cui, S.; Sayed, A.H.; Poor, H.V. Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Trans. Sig. Process. 2009, 57, 1128–1140. [Google Scholar]
- Gardner, W.A. Signal interception: A unifying theoretical framework for feature detection. IEEE Trans. Commun. 1988, 36, 897–906. [Google Scholar] [CrossRef]
- Fehske, A.; Gaeddert, J.; Reed, J.H. A new approach to signal classification using spectral correlation and neural networks. In Proceedings of the First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks DySPAN 2005, Baltimore, MD, USA, 8–11 November 2005; pp. 144–150. [Google Scholar]
- Lunden, J.; Koivunen, V.; Huttunen, A.; Poor, H.V. Collaborative cyclostationary spectrum sensing for cognitive radio systems. IEEE Trans. Commun. 2009, 57, 4182–4195. [Google Scholar] [CrossRef]
- Vartiainen, J.; Lehtomaki, J.J.; Saarnisaari, H. Double-threshold based narrowband signal extraction. In Proceedings of the 2005 IEEE 61st Vehicular Technology Conference VTC, Stockholm, Sweden, 30 May–1 June 2005; Volume 2, pp. 1288–1292. [Google Scholar]
- Vartiainen, J. Localization of multiple narrowband signals based on the FCME algorithm. In Proceedings of the Nordic Radio Symposium NRS, Oulu, Finland, 16–18 August 2004; Volume 1, p. 5. [Google Scholar]
- Kim, J.; Kim, M.; Won, I.; Yang, S.; Lee, K.; Huh, W. A biomedical signal segmentation algorithm for event detection based on slope tracing. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 1889–1892. [Google Scholar]
- Huang, H.; Li, J.Q.; Wang, J.; Wang, H. FCN-Based Carrier Signal Detection in Broadband Power Spectrum. IEEE Access 2020, 8, 113042–113051. [Google Scholar] [CrossRef]
- Lin, M.; Zhang, X.; Tian, Y.; Huang, Y. Multi-Signal Detection Framework: A Deep Learning Based Carrier Frequency and Bandwidth Estimation. Sensors 2022, 22, 3909. [Google Scholar] [CrossRef]
- Huang, H.; Wang, P.; Wang, J.; Li, J. Deep Learning-Based End-to-End Carrier Signal Detection in Broadband Power Spectrum. Electronics 2022, 11, 1896. [Google Scholar] [CrossRef]
- Sejdić, E.; Djurović, I.; Jiang, J. Time–frequency feature representation using energy concentration: An overview of recent advances. Digit. Signal Process. 2009, 19, 153–183. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Chen, M.; Challita, U.; Saad, W.; Yin, C.; Debbah, M. Artificial Neural Networks-Based Machine Learning for Wireless Networks: A Tutorial. IEEE Commun. Surv. Tutor. 2019, 21, 3039–3071. [Google Scholar] [CrossRef] [Green Version]
- Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.-C.; Kim, D.I. Applications of Deep Reinforcement Learning in Communications and Networking: A Survey. IEEE Commun. Surv. Tutor. 2019, 21, 3133–3174. [Google Scholar] [CrossRef]
- O’Shea, T.; Hoydis, J. An Introduction to Deep Learning for the Physical Layer. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Morozov, O.A.; Ovchinnikov, P.E. Neural Network Detection of MSK Signals. In Proceedings of the 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, Marco Island, FL, USA, 4–7 January 2009; pp. 594–596. [Google Scholar]
- Li, Y.; Wang, B.; Shao, G.; Shao, S.; Pei, X. Blind Detection of Underwater Acoustic Communication Signals Based on Deep Learning. IEEE Access 2020, 8, 204114–204131. [Google Scholar] [CrossRef]
- Yuan, Y.; Sun, Z.; Wei, Z.; Jia, K. DeepMorse: A Deep Convolutional Learning Method for Blind Morse Signal Detection in Wideband Wireless Spectrum. IEEE Access 2019, 7, 80577–80587. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention; Springer: Munich, Germany, 2015; Volume 9351, pp. 234–241. [Google Scholar]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Forrest, N.I.; Song, H.; Matthew, W.M.; Khalid, A.; William, J.D.; Kurt, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. arXiv 2014, arXiv:1602.07360. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6848–6856. [Google Scholar]
- Huang, G.; Liu, S.; Laurens van der, M.; Kilian, Q.W. CondenseNet: An Efficient DenseNet Using Learned Group Convolutions. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2752–2761. [Google Scholar]
- Wu, B.; Wan, A.; Yue, X.; Jin, P.; Zhao, S.; Noah, G.; Amir, G.; Joseph, G.; Kurt, K. Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018; pp. 9127–9135. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Mark, S.; Andrew, H.; Zhu, M.; Andrew, Z.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]
- Andrew, H.; Mark, S.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.X.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Proakis, J.G.; Manolakis, D.G. Digital Signal Processing: Principles, Algorithms and Applications, 3rd ed.; Prentice-Hall: Hoboken, NJ, USA, 1996; pp. 910–913. [Google Scholar]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Woo, S.H.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Avenash, R.; Viswanath, P. Semantic Segmentation of Satellite Images using a Modified CNN with Hard-Swish Activation Function. In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019), Prague, Czech Republic, 25–27 February 2019; pp. 413–420. [Google Scholar]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the International Conference Machine Learning (ICML), Atlanta, GA, USA, 16–21 June 2013; p. 3. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the 33rd Conference Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv 2016, arXiv:1608.03983. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. In Advances in Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2005; pp. 345–359. [Google Scholar]
Input Shape | Operator | Exp Size | Out Shape | Out Scale | SE | NL | Stride |
---|---|---|---|---|---|---|---|
1 × 10 × 16,384 | Conv2d | - | 16 × 10 × 8192 | P1 | - | HS | 2 |
16 × 10 × 8192 | Fusion block, 1 × 3 | 16 | 16 × 10 × 8192 | - | - | RE | 1 |
16 × 10 × 8129 | Fusion block, 1 × 3 | 64 | 24 × 10 × 4096 | P2 | - | RE | 2 |
24 × 10 × 4096 | Fusion block, 1 × 3 | 72 | 24 × 10 × 4096 | - | - | RE | 1 |
24 × 10 × 4096 | Fusion block, 1 × 5 | 72 | 40 × 10 × 2048 | P3 | √ | RE | 2 |
40 × 10 × 2048 | Fusion block, 1 × 5 | 120 | 40 × 10 × 2048 | - | √ | RE | 1 |
40 × 10 × 2048 | Fusion block, 1 × 5 | 120 | 40 × 10 × 2048 | - | √ | RE | 1 |
40 × 10 × 2048 | Fusion block, 1 × 5 | 240 | 80 × 10 × 1024 | P4 | - | HS | 2 |
80 × 10 × 1024 | Fusion block, 1 × 5 | 200 | 80 × 10 × 1024 | - | - | HS | 1 |
80 × 10 × 1024 | Fusion block, 1 × 5 | 184 | 80 × 10 × 1024 | - | - | HS | 1 |
80 × 10 × 1024 | Fusion block, 1 × 5 | 184 | 80 × 10 × 1024 | - | - | HS | 1 |
80 × 10 × 1024 | Fusion block, 1 × 5 | 480 | 112 × 10 × 1024 | - | √ | HS | 1 |
112 × 10 × 1024 | Fusion block, 1 × 5 | 672 | 112 × 10 × 1024 | - | √ | HS | 1 |
112 × 10 × 1024 | Fusion block, 1 × 5 | 672 | 160 × 10 × 512 | P5 | √ | HS | 2 |
160 × 10 × 512 | Fusion block, 1 × 5 | 480 | 160 × 10 × 512 | - | √ | HS | 1 |
160 × 10 × 512 | Fusion block, 1 × 5 | 480 | 160 × 10 × 512 | - | √ | HS | 1 |
160 × 10 × 512 | Fusion block, 1 × 5 | 480 | 80 × 10 × 256 | P6 | √ | HS | 2 |
80 × 10 × 256 | Fusion block, 1 × 5 | 480 | 80 × 10 × 128 | P7 | √ | HS | 2 |
80 × 10 × 128 | Fusion block, 1 × 5 | 480 | 80 × 10 × 64 | P8 | √ | HS | 2 |
80 × 10 × 64 | Fusion block, 1 × 5 | 480 | 80 × 10 × 32 | P9 | √ | HS | 2 |
80 × 10 × 32 | Fusion block, 1 × 5 | 480 | 80 × 10 × 16 | P10 | √ | HS | 2 |
80 × 10 × 16 | Fusion block, 1 × 5 | 480 | 80 × 10 × 8 | P11 | √ | HS | 2 |
Sample Nums | 1000 |
Sample Rate | 3.2 MHz |
Sample Time Duration | 200 ms |
Broad Signal Bandwidth | 3.2 MHz |
Sub-Carrier Signal Modulation | 2FSK, OFDM, BPSK, 16QAM, GMSK |
Sub-Carrier Signal bandwidth | 4~117 kHz |
Sub-Carrier Signal Time Duration | 20~200MS |
Sub-Carrier Signal SNR | −4~14 dB |
FFT Length | 16,384 |
Window Function | Hanning Window |
Consecutive Frame Nums | 10 |
Single Frame Time Domain Signal Length | 3200 |
MODEL | AP60 | AR60 | F-S60 | AP70 | AR70 | F-S70 | AP80 | AR80 | F-S80 | AP90 | AR90 | F-S90 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
FFSCN-FMN | 99.33 | 94.82 | 97.02 | 98.19 | 93.73 | 95.91 | 96.44 | 92.06 | 94.20 | 93.43 | 89.19 | 91.26 |
FFSCN-MN | 99.43 | 90.42 | 94.71 | 98.71 | 89.76 | 94.02 | 96.52 | 87.77 | 91.94 | 91.27 | 82.99 | 86.93 |
FFSCN-R | 99.04 | 92.57 | 95.69 | 97.70 | 91.31 | 94.40 | 94.95 | 88.75 | 91.75 | 89.72 | 83.85 | 86.69 |
SCN | 99.08 | 90.75 | 94.73 | 98.12 | 89.87 | 93.81 | 95.84 | 87.78 | 91.63 | 90.95 | 83.30 | 86.96 |
SigdetNet | 83.76 | 95.11 | 89.07 | 81.59 | 92.64 | 86.77 | 77.10 | 87.55 | 81.99 | 65.10 | 73.92 | 69.23 |
FCN | 34.32 | 73.06 | 46.70 | 31.49 | 67.03 | 42.85 | 28.05 | 59.69 | 38.17 | 20.98 | 44.64 | 28.55 |
MODEL | FLOPS (M) | Parameters (K) | Time Cost (ms) |
---|---|---|---|
FFSCN-FMN | 2427.08 | 2803.83 | 7.82 |
FFSCN-MN | 7814.48 | 2589.96 | 10.71 |
FFSCN-R | 15,680.69 | 2410.66 | 21.42 |
SCN | 2043.88 | 2342.56 | 17.35 |
SigdetNet | 454.98 | 297.52 | 8.80 |
FCN | 9.43 | 110.11 | 7.16 |
MODEL | AP60 | AR60 | F-S60 | AP70 | AR70 | F-S70 | AP80 | AR80 | F-S80 | AP90 | AR90 | F-S90 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
FFSCN-FMN_9× | 99.46 | 91.31 | 95.21 | 98.54 | 90.47 | 94.33 | 96.57 | 88.66 | 92.45 | 93.08 | 85.46 | 89.11 |
FFSCN-FMN_11× | 99.33 | 94.82 | 97.02 | 98.19 | 93.73 | 95.91 | 96.44 | 92.06 | 94.20 | 93.43 | 89.19 | 91.26 |
FFSCN-FMN_13× | 99.48 | 94.65 | 97.01 | 98.25 | 93.54 | 95.84 | 96.49 | 91.74 | 94.05 | 93.44 | 88.93 | 91.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Wang, J.; Li, J. FFSCN: Frame Fusion Spectrum Center Net for Carrier Signal Detection. Electronics 2022, 11, 3349. https://doi.org/10.3390/electronics11203349
Huang H, Wang J, Li J. FFSCN: Frame Fusion Spectrum Center Net for Carrier Signal Detection. Electronics. 2022; 11(20):3349. https://doi.org/10.3390/electronics11203349
Chicago/Turabian StyleHuang, Hao, Jiao Wang, and Jianqing Li. 2022. "FFSCN: Frame Fusion Spectrum Center Net for Carrier Signal Detection" Electronics 11, no. 20: 3349. https://doi.org/10.3390/electronics11203349
APA StyleHuang, H., Wang, J., & Li, J. (2022). FFSCN: Frame Fusion Spectrum Center Net for Carrier Signal Detection. Electronics, 11(20), 3349. https://doi.org/10.3390/electronics11203349