Quantum Chaotic Honey Badger Algorithm for Feature Selection
Abstract
:1. Introduction
- A modified version of the honey badger algorithm is proposed and applied as a feature selection technique.
- Quantum-based optimization and the 2D Hénon chaotic map are used to improve the HBA during the process of selecting relevant features.
- The efficiency of the developed method is evaluated using state-of-the-art FS methods applied to eighteen datasets.
2. Background
2.1. Honey Badger Algorithm (HBA)
- Initialization process: During this stage, the problem space’s upper () and lower () boundaries are used to determine the first potential solution. As a result, the first solutions are stochastic sets that may be created using the following method according to Equation (1) [25].
- Updating positions: Coordinates of the candidates are updated at this point. For instance, this can involve applying a technique that uses either the digging or honey stages.
- -
- Digging phase: In this phase, the movements of the potential search subjects are influenced by the potency of the predator’s odor and the separation of the honey badger (agent) from the prey (P). The honey badger excavates in a polarized circle. The following is the stated formula for its motion:
- -
- Honey phase: When looking for beehives, honey badgers utilize the honey phase to alter their position relative to the honey lead bird. The following equation was used by Hashim et al. [25] to determine the honey phase:
where P is the best solution obtained so far and is a random number having values between 0 and 1. - Modeling intensity : Since the honey badger perception of insect scent governs its behavior, Hashim et al. [25] created the following formulation for each contender’s scent intensity of the prey.
- Modeling the density parameter (): According to Hashim et al. [25], the value serves as a regulator for transmission among the local and global search stages. Hashim et al. [25] hypothesized that is depicted throughout the iterations, as shown below:
- Escaping from local solutions: the algorithm developers [25] employed a warning (Fg) to point out the search direction to avoid getting stuck on local solutions.
Algorithm 1 Steps of HBA | |
1: | Inputs: Agents size N, number of iterations . |
2: | Outputs: The optimal solutions. |
3: | Step 1: Calculate the first set of N solutions U with dimension d (i.e., number of unknown variables). |
4: | Compute the fitness function of Equation (13) and the corresponding swarm matrix as the best solutions (P). |
5: | while (Iter ≤ Iter ) do |
6: | Upgrade the value of the decreasing factor through Equation (19). |
7: | for (i = 1 to N) do |
8: | Compute the intensity through Equation (5). |
9: | if then |
10: | Upgrade the location of through Equation (15). |
11: | else |
12: | Upgrade the location of through Equation (4). |
13: | Evaluate the new solutions and compute the and assign . |
14: | if ≤ then |
15: | Set = and = . |
16: | if ≤ then |
17: | Set = and = . |
2.2. Two-Dimensional Hénon Map
3. Quantum Chaotic Honey Badger Algorithm (QCHBA)
3.1. Initial Solutions
3.2. Updating Solution
- First modification: The two-dimensional Hénon map is applied to adjust the parameters of C and of Equation (11), respectively, to improve the functionality of the fundamental HBA optimizer. The updated values of C and follow the equation shown below:The variables and C undergo changes during the course of the iterations with values ranging from 0 to 7 and 0 to 4, respectively.The CHBA uses the values 4 and 7 to provide broad diversity. When implemented, the Hénon map’s initialization is 0 (x(1) = 0; y(1) = 0). Figure 1 shows how the map’s attractor works.
3.3. Evaluate Quality of
Algorithm 2 Pseudo code of QCHBA | |
1: | Inputs: Agents size N, number of iterations , the dataset. |
2: | Outputs: The optimal solutions. |
3: | Step 1: Calculate the first set of N solutions U with dimension d (i.e., number of unknown variables using QBO as in Equation (9)). |
4: | Compute the fitness function as in Equation (10) and the corresponding swarm matrix as the best solutions (P). |
5: | Calculate C, and based on Hénon map, using Equation (11) with dimensions of 1* Iter. |
6: | while (Iter ) do |
7: | Upgrade the value of the decreasing factor through Equation (13). |
8: | for (i = 1 to N) do |
9: | Compute the intensity through Equation (5). |
10: | if then |
11: | Upgrade the location of through Equation (12). |
12: | else |
13: | Upgrade the location of through Equation (4). |
14: | Evaluate the new solutions and compute the and assign . |
15: | if ≤ then |
16: | Set = and = . |
17: | if ≤ then |
18: | Set = and = . |
19: | Evaluate the performance of the best solution using the testing set. |
4. Experimental Results
4.1. Data Description
4.2. Performance Measures
- Accuracy (Acc): The corrected classified data ratio was calculated using this metric. It was determined using Equation (14).
- Fitness value: This metric assesses the effectiveness of the techniques using the fitness function as in Equation (10).
- Maximum of the fitness value: This metric captures the highest result that the fitness function for each method can achieve.
- Minimum of the fitness value: This metric captures the lowest result that the fitness function for each method can achieve.
- Selected features: This metric keeps track of how many chosen features each algorithm is able to produce.
- Standard deviation: This metric assesses an algorithm’s consistency throughout numerous executions. The calculation is as in Equation (17).The parameter refers to the number of runs and refers to the given fitness value. Its average is given by . Whereas, refers to the best at run i.
4.3. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tubishat, M.; Idris, N.; Shuib, L.; Abushariah, M.A.; Mirjalili, S. Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection. Expert Syst. Appl. 2020, 145, 113–122. [Google Scholar] [CrossRef]
- Hancer, E.; Xue, B.; Karaboga, D.; Zhang, M. A binary ABC algorithm based on advanced similarity scheme for feature selection. Appl. Soft Comput. 2015, 36, 334–348. [Google Scholar] [CrossRef]
- Ewees, A.A.; Abualigah, L.; Yousri, D.; Algamal, Z.Y.; Al-qaness, M.A.; Ibrahim, R.A.; Abd Elaziz, M. Improved Slime Mould Algorithm based on Firefly Algorithm for feature selection: A case study on QSAR model. Eng. Comput. 2021, 38, 2407–2421. [Google Scholar] [CrossRef]
- Yousri, D.; Abd Elaziz, M.; Abualigah, L.; Oliva, D.; Al-Qaness, M.A.; Ewees, A.A. COVID-19 X-ray images classification based on enhanced fractional-order cuckoo search optimizer using heavy-tailed distributions. Appl. Soft Comput. 2021, 101, 107052. [Google Scholar] [CrossRef] [PubMed]
- Al-qaness, M.A. Device-free human micro-activity recognition method using WiFi signals. Geo-Spat. Inf. Sci. 2019, 22, 128–137. [Google Scholar] [CrossRef]
- Dahou, A.; Elaziz, M.A.; Zhou, J.; Xiong, S. Arabic sentiment classification using convolutional neural network and differential evolution algorithm. Comput. Intell. Neurosci. 2019, 2019, 2537689. [Google Scholar] [CrossRef] [Green Version]
- Rundo, L.; Tangherloni, A.; Cazzaniga, P.; Nobile, M.S.; Russo, G.; Gilardi, M.C.; Vitabile, S.; Mauri, G.; Besozzi, D.; Militello, C. A novel framework for MR image segmentation and quantification by using MedGA. Comput. Methods Programs Biomed. 2019, 176, 159–172. [Google Scholar] [CrossRef]
- Ortiz, A.; Górriz, J.; Ramírez, J.; Salas-Gonzalez, D.; Llamas-Elvira, J.M. Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies. Appl. Soft Comput. 2013, 13, 2668–2682. [Google Scholar] [CrossRef]
- Cheng, S.; Ma, L.; Lu, H.; Lei, X.; Shi, Y. Evolutionary computation for solving search-based data analytics problems. Artif. Intell. Rev. 2021, 54, 1321–1348. [Google Scholar] [CrossRef]
- Nobile, M.S.; Tangherloni, A.; Rundo, L.; Spolaor, S.; Besozzi, D.; Mauri, G.; Cazzaniga, P. Computational intelligence for parameter estimation of biochemical systems. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Ibrahim, R.A.; Abualigah, L.; Ewees, A.A.; Al-Qaness, M.A.; Yousri, D.; Alshathri, S.; Abd Elaziz, M. An electric fish-based arithmetic optimization algorithm for feature selection. Entropy 2021, 23, 1189. [Google Scholar] [CrossRef]
- Ibrahim, R.; Ewees, A.; Oliva, D.; Abd Elaziz, M.; Lu, S. Improved salp swarm algorithm based on particle swarm optimization for feature selection. J. Ambient. Intell. Hum. Comput. 2019, 10, 3155–3169. [Google Scholar] [CrossRef]
- Aziz, M.A.E.; Hassanien, A.E. Modified cuckoo search algorithm with rough sets for feature selection. Neural Comput. Appl. 2018, 29, 925–934. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Moemen, Y.S.; Hassanien, A.E.; Xiong, S. Toxicity risks evaluation of unknown FDA biotransformed drugs based on a multi-objective feature selection approach. Appl. Soft Comput. 2020, 97, 105509. [Google Scholar] [CrossRef]
- Ibrahim, R.A.; Abd Elaziz, M.; Ewees, A.A.; El-Abd, M.; Lu, S. New feature selection paradigm based on hyper-heuristic technique. Appl. Math. Model. 2021, 98, 14–37. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, M.; Browne, W.N. Particle swarm optimization for feature selection in classification: A multi-objective approach. IEEE Trans. Cybern. 2012, 43, 1656–1671. [Google Scholar] [CrossRef] [PubMed]
- Hancer, E. Differential evolution for feature selection: A fuzzy wrapper–filter approach. Soft Comput. 2019, 23, 5233–5248. [Google Scholar] [CrossRef]
- Tsai, C.F.; Eberle, W.; Chu, C.Y. Genetic algorithms in feature and instance selection. Knowl.-Based Syst. 2013, 39, 240–247. [Google Scholar] [CrossRef]
- Sayed, G.I.; Hassanien, A.E.; Azar, A.T. Feature selection via a novel chaotic crow search algorithm. Neural Comput. Appl. 2019, 31, 171–188. [Google Scholar] [CrossRef]
- Oh, I.S.; Lee, J.S.; Moon, B.R. Hybrid genetic algorithms for feature selection. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1424–1437. [Google Scholar]
- Abdel-Basset, M.; Ding, W.; El-Shahat, D. A hybrid Harris Hawks optimization algorithm with simulated annealing for feature selection. Artif. Intell. Rev. 2021, 54, 593–637. [Google Scholar] [CrossRef]
- Sahlol, A.T.; Yousri, D.; Ewees, A.A.; Al-Qaness, M.A.; Damasevicius, R.; Elaziz, M.A. COVID-19 image classification using deep features and fractional-order marine predators algorithm. Sci. Rep. 2020, 10, 15364. [Google Scholar] [CrossRef] [PubMed]
- Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Yilmaz, S.; Sen, S. Electric fish optimization: A new heuristic algorithm inspired by electrolocation. Neural Comput. Appl. 2020, 32, 11543–11578. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2022, 192, 84–110. [Google Scholar] [CrossRef]
- Elseify, M.A.; Kamel, S.; Abdel-Mawgoud, H.; Elattar, E.E. A Novel Approach Based on Honey Badger Algorithm for Optimal Allocation of Multiple DG and Capacitor in Radial Distribution Networks Considering Power Loss Sensitivity. Mathematics 2022, 10, 2081. [Google Scholar] [CrossRef]
- Almodfer, R.; Abd Elaziz, M.; Alshathri, S.; Abualigah, L.; Mudhsh, M.; Shahzad, K.; Issa, M. Improving Parameters Estimation of Fuel Cell Using Honey Badger Optimization Algorithm. Front. Energy Res. 2022, 10, 875332. [Google Scholar] [CrossRef]
- Nassef, A.M.; Houssein, E.H.; Helmy, B.E.D.; Rezk, H. Modified honey badger algorithm based global MPPT for triple-junction solar photovoltaic system under partial shading condition and global optimization. Energy 2022, 254, 124363. [Google Scholar] [CrossRef]
- Kumar, D.S.R.; Kumar, K.P.; Raju, K.G.; Gowsalya, S.; Balraj, L.; Srivastava, A.K. An IoT-based Optimization scheme on task scheduling for minimizing energy in Cloud Computing. In Proceedings of the 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 5–26 March 2022; Volume 1, pp. 1–6. [Google Scholar]
- Hénon, M. A two-dimensional mapping with a strange attractor. In The Theory of Chaotic Attractors; Springer: New York, NY, USA, 1976; pp. 94–102. [Google Scholar]
- Asuncion, A.; Newman, D. UCI Machine Learning Repository. 2010. Available online: https://archive.ics.uci.edu/ml/datasets/SML2010 (accessed on 14 September 2022).
- Awad, N.H.; Ali, M.Z.; Suganthan, P.N.; Reynolds, R.G. An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 2958–2965. [Google Scholar]
- Ibrahim, R.A.; Abd Elaziz, M.; Lu, S. Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization. Expert Syst. Appl. 2018, 108, 1–27. [Google Scholar] [CrossRef]
- Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [Google Scholar] [CrossRef]
- Mohamed, A.W.; Hadi, A.A.; Fattouh, A.M.; Jambi, K.M. LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), San Sebastián, Spain, 5–8 June 2017; pp. 145–152. [Google Scholar]
- Qin, A.K.; Suganthan, P.N. Self-adaptive differential evolution algorithm for numerical optimization. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Scotland, UK, 2–5 September 2005; Volume 2, pp. 1785–1791. [Google Scholar]
Datasets | Number of Features | Number of Instances | Number of Classes | Data Category |
---|---|---|---|---|
Breastcancer (S1) | 9 | 699 | 2 | Biology |
BreastEW (S2) | 30 | 569 | 2 | Biology |
CongressEW (S3) | 16 | 435 | 2 | Politics |
Exactly (S4) | 13 | 1000 | 2 | Biology |
Exactly2 (S5) | 13 | 1000 | 2 | Biology |
HeartEW (S6) | 13 | 270 | 2 | Biology |
IonosphereEW (S7) | 34 | 351 | 2 | Electromagnetic |
KrvskpEW (S8) | 36 | 3196 | 2 | Game |
Lymphography (S9) | 18 | 148 | 2 | Biology |
M-of-n (S10) | 13 | 1000 | 2 | Biology |
PenglungEW (S11) | 325 | 73 | 2 | Biology |
SonarEW (S12) | 60 | 208 | 2 | Biology |
SpectEW (S13) | 22 | 267 | 2 | Biology |
Tic-tac-toc (S14) | 9 | 958 | 2 | Game |
Vote (S15) | 16 | 300 | 2 | Politics |
WaveformEW (S16) | 40 | 5000 | 3 | Physics |
Water (S17) | 13 | 178 | 3 | Chemistry |
Zoo (S18) | 16 | 101 | 6 | Artificial |
HBA | CHAB | QCHBA | bGWO | EFO | RSA | LSHADE | LSHADECS | SaDE | |
---|---|---|---|---|---|---|---|---|---|
S1 | 0.0568 | 0.0551 | 0.0736 | 0.0627 | 0.0823 | 0.0824 | 0.0833 | 0.1325 | 0.0917 |
S2 | 0.0672 | 0.0552 | 0.0318 | 0.0796 | 0.0884 | 0.0752 | 0.1254 | 0.1996 | 0.1114 |
S3 | 0.0443 | 0.0707 | 0.0849 | 0.0473 | 0.0989 | 0.0191 | 0.0655 | 0.1609 | 0.1063 |
S4 | 0.0578 | 0.0710 | 0.0539 | 0.0989 | 0.0793 | 0.1103 | 0.2504 | 0.2942 | 0.3853 |
S5 | 0.2214 | 0.1783 | 0.2496 | 0.2152 | 0.3134 | 0.2868 | 0.2258 | 0.3748 | 0.2285 |
S6 | 0.1883 | 0.1557 | 0.1835 | 0.1920 | 0.1662 | 0.1733 | 0.2019 | 0.3583 | 0.2417 |
S7 | 0.0794 | 0.0705 | 0.0923 | 0.0973 | 0.1457 | 0.0887 | 0.1160 | 0.1660 | 0.1148 |
S8 | 0.0737 | 0.0842 | 0.0840 | 0.1024 | 0.0992 | 0.0953 | 0.3904 | 0.4010 | 0.3658 |
S9 | 0.1944 | 0.1878 | 0.1150 | 0.1050 | 0.2242 | 0.1424 | 0.2567 | 0.2667 | 0.2516 |
S10 | 0.0546 | 0.0689 | 0.0519 | 0.0766 | 0.0808 | 0.1181 | 0.2118 | 0.3503 | 0.2706 |
S11 | 0.0341 | 0.0815 | 0.0080 | 0.0810 | 0.2006 | 0.1308 | 0.3200 | 0.3330 | 0.3500 |
S12 | 0.0823 | 0.0764 | 0.0655 | 0.0840 | 0.1374 | 0.1213 | 0.2833 | 0.4167 | 0.3333 |
S13 | 0.1188 | 0.2002 | 0.1518 | 0.1235 | 0.2345 | 0.2058 | 0.1630 | 0.2731 | 0.2417 |
S14 | 0.2290 | 0.2409 | 0.2342 | 0.2678 | 0.2420 | 0.2276 | 0.2635 | 0.3234 | 0.2992 |
S15 | 0.0714 | 0.0572 | 0.0504 | 0.1114 | 0.1043 | 0.0353 | 0.0567 | 0.1450 | 0.0850 |
S16 | 0.2728 | 0.2810 | 0.2708 | 0.2914 | 0.3115 | 0.2969 | 0.3574 | 0.4506 | 0.4094 |
S17 | 0.0565 | 0.0732 | 0.0647 | 0.0634 | 0.0796 | 0.0692 | 0.1833 | 0.1819 | 0.1583 |
S18 | 0.0303 | 0.0400 | 0.0303 | 0.0481 | 0.0425 | 0.0338 | 0.3333 | 0.2133 | 0.0833 |
HBA | CHAB | QCHBA | bGWO | EFO | RSA | LSHADE | LSHADECS | SaDE | |
---|---|---|---|---|---|---|---|---|---|
S1 | 0.0110 | 0.0074 | 0.0092 | 0.0088 | 0.0037 | 0.0073 | 0.0000 | 0.0106 | 0.0000 |
S2 | 0.0139 | 0.0129 | 0.0108 | 0.0112 | 0.0105 | 0.0122 | 0.0000 | 0.0192 | 0.0236 |
S3 | 0.0130 | 0.0101 | 0.0016 | 0.0102 | 0.0138 | 0.0056 | 0.0000 | 0.0293 | 0.0236 |
S4 | 0.0180 | 0.0452 | 0.0041 | 0.0476 | 0.0282 | 0.0521 | 0.0645 | 0.0000 | 0.0000 |
S5 | 0.0100 | 0.0364 | 0.0175 | 0.0242 | 0.0095 | 0.0073 | 0.0000 | 0.0148 | 0.0236 |
S6 | 0.0240 | 0.0281 | 0.0141 | 0.0315 | 0.0340 | 0.0143 | 0.0000 | 0.0223 | 0.0092 |
S7 | 0.0212 | 0.0236 | 0.0025 | 0.0107 | 0.0033 | 0.0140 | 0.0000 | 0.0236 | 0.0070 |
S8 | 0.0126 | 0.0151 | 0.0107 | 0.0107 | 0.0109 | 0.0119 | 0.0054 | 0.0089 | 0.0000 |
S9 | 0.0399 | 0.0348 | 0.0183 | 0.0224 | 0.0094 | 0.0070 | 0.0094 | 0.0236 | 0.0096 |
S10 | 0.0083 | 0.0337 | 0.0018 | 0.0308 | 0.0208 | 0.0565 | 0.0000 | 0.0422 | 0.0211 |
S11 | 0.0137 | 0.0491 | 0.0152 | 0.0346 | 0.0007 | 0.0399 | 0.0000 | 0.0123 | 0.0236 |
S12 | 0.0211 | 0.0239 | 0.0196 | 0.0190 | 0.0113 | 0.0097 | 0.0000 | 0.0000 | 0.0000 |
S13 | 0.0061 | 0.0239 | 0.0024 | 0.0215 | 0.0138 | 0.0155 | 0.0000 | 0.0144 | 0.0196 |
S14 | 0.0093 | 0.0162 | 0.0020 | 0.0121 | 0.0119 | 0.0084 | 0.0000 | 0.0206 | 0.0026 |
S15 | 0.0216 | 0.0166 | 0.0165 | 0.0133 | 0.0106 | 0.0014 | 0.0000 | 0.0471 | 0.0236 |
S16 | 0.0160 | 0.0139 | 0.0106 | 0.0094 | 0.0077 | 0.0080 | 0.0000 | 0.0032 | 0.0000 |
S17 | 0.0140 | 0.0107 | 0.0021 | 0.0112 | 0.0172 | 0.0061 | 0.0000 | 0.0137 | 0.0196 |
S18 | 0.0058 | 0.0100 | 0.0043 | 0.0081 | 0.0112 | 0.0163 | 0.0000 | 0.0000 | 0.0236 |
Min | HBA | CHAB | QCHBA | bGWO | EFO | RSA | LSHADE | LSHADECS | SaDE |
---|---|---|---|---|---|---|---|---|---|
S1 | 0.0462 | 0.0415 | 0.0608 | 0.0462 | 0.0766 | 0.0766 | 0.0833 | 0.1250 | 0.0917 |
S2 | 0.0482 | 0.0291 | 0.0133 | 0.0616 | 0.0782 | 0.0595 | 0.1254 | 0.1860 | 0.0947 |
S3 | 0.0332 | 0.0560 | 0.0664 | 0.0291 | 0.0791 | 0.0166 | 0.0655 | 0.1402 | 0.0897 |
S4 | 0.0462 | 0.0462 | 0.0462 | 0.0538 | 0.0538 | 0.0538 | 0.2048 | 0.2942 | 0.3853 |
S5 | 0.2192 | 0.1562 | 0.2327 | 0.2057 | 0.2968 | 0.2794 | 0.2258 | 0.3643 | 0.2118 |
S6 | 0.1474 | 0.1551 | 0.1205 | 0.1321 | 0.1282 | 0.1551 | 0.2019 | 0.3426 | 0.2352 |
S7 | 0.0489 | 0.0518 | 0.0303 | 0.0781 | 0.1408 | 0.0751 | 0.1160 | 0.1493 | 0.1099 |
S8 | 0.0586 | 0.0628 | 0.0615 | 0.0853 | 0.0864 | 0.0758 | 0.3866 | 0.3947 | 0.3658 |
S9 | 0.1233 | 0.1400 | 0.0810 | 0.0800 | 0.2163 | 0.1322 | 0.2500 | 0.2500 | 0.2448 |
S10 | 0.0462 | 0.0462 | 0.0462 | 0.0462 | 0.0660 | 0.0538 | 0.2118 | 0.3205 | 0.2557 |
S11 | 0.0025 | 0.0083 | 0.0037 | 0.0246 | 0.1997 | 0.0760 | 0.3200 | 0.3242 | 0.3333 |
S12 | 0.0300 | 0.0317 | 0.0217 | 0.0548 | 0.1262 | 0.1057 | 0.2833 | 0.4167 | 0.3333 |
S13 | 0.0955 | 0.1515 | 0.1061 | 0.0848 | 0.2212 | 0.1818 | 0.1630 | 0.2630 | 0.2278 |
S14 | 0.2214 | 0.2278 | 0.2009 | 0.2524 | 0.2243 | 0.2196 | 0.2635 | 0.3089 | 0.2974 |
S15 | 0.0425 | 0.0338 | 0.0275 | 0.0888 | 0.0950 | 0.0338 | 0.0567 | 0.1117 | 0.0683 |
S16 | 0.2501 | 0.2595 | 0.2440 | 0.2711 | 0.3031 | 0.2877 | 0.3574 | 0.4483 | 0.4094 |
S17 | 0.0308 | 0.0538 | 0.0308 | 0.0462 | 0.0635 | 0.0615 | 0.1833 | 0.1722 | 0.1444 |
S18 | 0.0250 | 0.0250 | 0.0188 | 0.0250 | 0.0250 | 0.0188 | 0.3333 | 0.2133 | 0.0667 |
Max | HBA | CHAB | QCHBA | bGWO | EFO | RSA | LSHADE | LSHADECS | SaDE |
---|---|---|---|---|---|---|---|---|---|
S1 | 0.0795 | 0.0731 | 0.0941 | 0.0766 | 0.0860 | 0.0941 | 0.0833 | 0.1400 | 0.0917 |
S2 | 0.0995 | 0.0782 | 0.0646 | 0.1032 | 0.1049 | 0.0907 | 0.1254 | 0.2132 | 0.1281 |
S3 | 0.0769 | 0.0914 | 0.1203 | 0.0685 | 0.1164 | 0.0291 | 0.0655 | 0.1816 | 0.1230 |
S4 | 0.1020 | 0.2164 | 0.1020 | 0.1939 | 0.1142 | 0.1894 | 0.2960 | 0.2942 | 0.3853 |
S5 | 0.2640 | 0.2577 | 0.3167 | 0.3058 | 0.3199 | 0.2961 | 0.2258 | 0.3853 | 0.2452 |
S6 | 0.2359 | 0.2103 | 0.2115 | 0.2385 | 0.2103 | 0.1910 | 0.2019 | 0.3741 | 0.2481 |
S7 | 0.1272 | 0.1125 | 0.1093 | 0.1172 | 0.1496 | 0.1376 | 0.1160 | 0.1826 | 0.1197 |
S8 | 0.1103 | 0.1060 | 0.1049 | 0.1214 | 0.1129 | 0.1116 | 0.3942 | 0.4073 | 0.3658 |
S9 | 0.2522 | 0.2522 | 0.1489 | 0.1630 | 0.2389 | 0.1598 | 0.2633 | 0.2833 | 0.2583 |
S10 | 0.0795 | 0.1600 | 0.0872 | 0.1804 | 0.1097 | 0.1804 | 0.2118 | 0.3802 | 0.2855 |
S11 | 0.0646 | 0.1917 | 0.1065 | 0.1492 | 0.2015 | 0.1843 | 0.3200 | 0.3417 | 0.3667 |
S12 | 0.1090 | 0.1310 | 0.1045 | 0.1195 | 0.1526 | 0.1295 | 0.2833 | 0.4167 | 0.3333 |
S13 | 0.1212 | 0.2318 | 0.1939 | 0.1682 | 0.2561 | 0.2212 | 0.1630 | 0.2833 | 0.2556 |
S14 | 0.2401 | 0.2870 | 0.2734 | 0.3057 | 0.2559 | 0.2418 | 0.2635 | 0.3380 | 0.3010 |
S15 | 0.1225 | 0.0925 | 0.0925 | 0.1363 | 0.1225 | 0.0363 | 0.0567 | 0.1783 | 0.1017 |
S16 | 0.3104 | 0.3081 | 0.2964 | 0.3093 | 0.3210 | 0.3062 | 0.3574 | 0.4528 | 0.4094 |
S17 | 0.0788 | 0.0942 | 0.1038 | 0.0885 | 0.1019 | 0.0769 | 0.1833 | 0.1917 | 0.1722 |
S18 | 0.0438 | 0.0563 | 0.0438 | 0.0625 | 0.0500 | 0.0563 | 0.3333 | 0.2133 | 0.1000 |
HBA | CHAB | QCHBA | bGWO | EFO | RSA | LSHADE | LSHADECS | SaDE | |
---|---|---|---|---|---|---|---|---|---|
S1 | 0.9479 | 0.9739 | 0.9764 | 0.9643 | 0.9629 | 0.9529 | 0.9286 | 0.9536 | 0.9429 |
S2 | 0.9605 | 0.9702 | 0.9930 | 0.9491 | 0.9684 | 0.9579 | 0.8684 | 0.8816 | 0.9035 |
S3 | 0.9310 | 0.9638 | 0.9747 | 0.9759 | 0.9609 | 0.9885 | 0.9540 | 0.9368 | 0.9655 |
S4 | 0.9935 | 0.9823 | 0.9965 | 0.9615 | 0.9820 | 0.9510 | 0.7375 | 0.6750 | 0.6700 |
S5 | 0.7655 | 0.8233 | 0.7470 | 0.7750 | 0.7270 | 0.7600 | 0.7250 | 0.6550 | 0.7300 |
S6 | 0.8352 | 0.8546 | 0.8898 | 0.8269 | 0.8889 | 0.8519 | 0.7593 | 0.7500 | 0.7593 |
S7 | 0.9254 | 0.9423 | 0.9577 | 0.9211 | 0.9127 | 0.9296 | 0.9296 | 0.9296 | 0.9437 |
S8 | 0.9286 | 0.9609 | 0.9598 | 0.9513 | 0.9713 | 0.9275 | 0.5852 | 0.6414 | 0.5594 |
S9 | 0.8333 | 0.8317 | 0.9361 | 0.9340 | 0.8299 | 0.9133 | 0.8000 | 0.8333 | 0.8333 |
S10 | 0.9988 | 0.9838 | 0.9975 | 0.9845 | 0.9820 | 0.9440 | 0.7450 | 0.6900 | 0.7100 |
S11 | 0.9733 | 0.9262 | 0.9967 | 0.9431 | 0.8667 | 0.8614 | 0.7333 | 0.7386 | 0.8846 |
S12 | 0.9595 | 0.9643 | 0.9738 | 0.9560 | 0.9381 | 0.9000 | 0.6905 | 0.5476 | 0.5357 |
S13 | 0.8185 | 0.8583 | 0.8769 | 0.8954 | 0.8111 | 0.8037 | 0.8148 | 0.8241 | 0.8519 |
S14 | 0.8108 | 0.8207 | 0.8070 | 0.7766 | 0.8052 | 0.8188 | 0.7188 | 0.7760 | 0.8750 |
S15 | 0.9467 | 0.9708 | 0.9783 | 0.9217 | 0.9467 | 0.9733 | 0.9667 | 0.9833 | 0.9083 |
S16 | 0.7451 | 0.7525 | 0.7624 | 0.7368 | 0.7394 | 0.7118 | 0.5370 | 0.5230 | 0.5170 |
S17 | 0.9764 | 0.9944 | 0.9819 | 0.9847 | 0.9833 | 0.9778 | 0.8333 | 0.9306 | 0.9861 |
S18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.6667 | 0.9333 | 0.8333 |
HBA | CHAB | QCHBA | bGWO | EFO | RSA | LSHADE | LSHADECS | SaDE | |
---|---|---|---|---|---|---|---|---|---|
S1 | 2.85 | 3.2 | 2.4 | 2.75 | 4.4 | 3.6 | 5 | 5 | 7 |
S2 | 8.5 | 9.5 | 7.65 | 10.15 | 18 | 11.2 | 13 | 13.5 | 14.5 |
S3 | 6.1 | 3.45 | 3.65 | 4.1 | 10.2 | 5.4 | 6 | 6.5 | 7.5 |
S4 | 7.15 | 6.75 | 6.6 | 8.35 | 8.2 | 8.6 | 8 | 6 | 12 |
S5 | 2.5 | 4.35 | 2.85 | 1.65 | 8.8 | 9.2 | 8 | 9 | 9.5 |
S6 | 7.35 | 5.2 | 6.85 | 4.7 | 8.6 | 5.2 | 6 | 8.5 | 8 |
S7 | 9.95 | 14.05 | 8.55 | 8.95 | 22.8 | 8.6 | 10 | 9.5 | 13 |
S8 | 17.65 | 16.35 | 17.2 | 21.1 | 26.4 | 10.8 | 20 | 19.5 | 21 |
S9 | 6.55 | 14 | 10.35 | 8.2 | 12.8 | 11.6 | 11.5 | 10.5 | 15 |
S10 | 7.05 | 6.6 | 6.8 | 8.15 | 8.4 | 8.8 | 10 | 11 | 12.5 |
S11 | 48.9 | 26.4 | 23.95 | 96.95 | 262 | 19.6 | 22.5 | 21 | 26 |
S12 | 26.55 | 27.5 | 25.15 | 26.6 | 49 | 26.8 | 32.5 | 31.5 | 36 |
S13 | 8.1 | 6.75 | 5.35 | 6.45 | 14.2 | 6.4 | 7.5 | 9 | 9.5 |
S14 | 6.35 | 6.1 | 5.45 | 6 | 6 | 5.8 | 8.5 | 9.5 | 12.5 |
S15 | 4.95 | 4.75 | 3.95 | 6.55 | 9 | 6.8 | 9.7 | 10.7 | 11.2 |
S16 | 20.7 | 19.35 | 22.75 | 21.8 | 30.8 | 15 | 20.4 | 20.9 | 23.4 |
S17 | 6.75 | 6.7 | 6.3 | 6.45 | 8.4 | 6.4 | 8.5 | 8.5 | 11.5 |
S18 | 6.4 | 4.85 | 4.85 | 7.7 | 6.8 | 5.4 | 11.45 | 11.45 | 13.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshathri, S.; Abd Elaziz, M.; Yousri , D.; Hassan , O.F.; Ibrahim , R.A. Quantum Chaotic Honey Badger Algorithm for Feature Selection. Electronics 2022, 11, 3463. https://doi.org/10.3390/electronics11213463
Alshathri S, Abd Elaziz M, Yousri D, Hassan OF, Ibrahim RA. Quantum Chaotic Honey Badger Algorithm for Feature Selection. Electronics. 2022; 11(21):3463. https://doi.org/10.3390/electronics11213463
Chicago/Turabian StyleAlshathri, Samah, Mohamed Abd Elaziz, Dalia Yousri , Osama Farouk Hassan , and Rehab Ali Ibrahim . 2022. "Quantum Chaotic Honey Badger Algorithm for Feature Selection" Electronics 11, no. 21: 3463. https://doi.org/10.3390/electronics11213463
APA StyleAlshathri, S., Abd Elaziz, M., Yousri , D., Hassan , O. F., & Ibrahim , R. A. (2022). Quantum Chaotic Honey Badger Algorithm for Feature Selection. Electronics, 11(21), 3463. https://doi.org/10.3390/electronics11213463