Oblique Projection-Based Covariance Matrix Reconstruction and Steering Vector Estimation for Robust Adaptive Beamforming
Abstract
:1. Introduction
2. Signal Model and Background
3. Proposed RAB Method
3.1. MNSP for Desired Signal SV Estimation
3.2. INCM Reconstruction and Beamformer Weight Vector Calculation
Method 1. The proposed INCM reconstruction-based RAB method. |
1: Calculate the SCM and , eigen-decompose and obtain , , ; 2: Correct the desired signal SV by solving the QCQP problem (11); 3: Obtain the interference SV estimates using the maximum entropy power spectrum (12); 4: Obtain each corrected interference SV and corresponding power by employing the oblique projection matrix, and reconstruct the INCM via (15); 5: Substitute and back into (7) to obtain the weight vector. |
4. Numerical Simulation and Analysis
4.1. Simulation Example 1
4.2. Simulation Example 2
4.3. Simulation Example 3
4.4. Simulation Example 4
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vorobyov, S.A.; Gershman, A.B.; Luo, Z.Q. Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem. IEEE Trans. Signal Process. 2003, 51, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Li, J.; Stoica, P. Fully Automatic Computation of Diagonal Loading Levels for Robust Adaptive Beamforming. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 449–458. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, S.; Cao, W. Covariance matrix reconstruction with iterative mismatch approximation for robust adaptive beamforming. J. Electromagn. Waves 2021, 35, 2468–2479. [Google Scholar] [CrossRef]
- Gu, Y.J.; Goodman, N.A.; Hong, S.H.; Li, Y. Robust adaptive beamforming based on interference covariance matrix sparse reconstruction. Signal Process. 2014, 96, 375–381. [Google Scholar] [CrossRef]
- Gu, Y.J.; Leshem, A. Robust Adaptive Beamforming Based on Interference Covariance Matrix Reconstruction and Steering Vector Estimation. IEEE Trans. Signal Process. 2012, 60, 3881–3885. [Google Scholar] [CrossRef]
- Duan, Y.L.; Yu, X.H.; Mei, L.R.; Cao, W.P. Low-Complexity Robust Adaptive Beamforming Based on INCM Reconstruction via Subspace Projection. Sensors 2021, 21, 7783. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.Y.; Ye, Z.F.; Xu, X.; Zheng, R. Covariance Matrix Reconstruction via Residual Noise Elimination and Interference Powers Estimation for Robust Adaptive Beamforming. IEEE Access 2019, 7, 53262–53272. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, J.; Xu, X.; Ye, Z. Robust Adaptive Beamforming With a Novel Interference-Plus-Noise Covariance Matrix Reconstruction Method. IEEE Trans. Signal Process. 2015, 63, 1643–1650. [Google Scholar] [CrossRef]
- Li, J.; Stoica, P.; Wang, Z.S. Doubly constrained robust Capon beamformer. IEEE Trans. Signal Process. 2004, 52, 2407–2423. [Google Scholar] [CrossRef]
- Vorobyov, S.A.; Rong, Y.; Gershman, A.B. Robust adaptive beamforming using probability-constrained optimization. In Proceedings of the 2005 IEEE/SP 13th Workshop on Statistical Signal Processing (SSP), Bordeaux, France, 17–20 July 2005; Volumes 1–2, pp. 869–874. [Google Scholar]
- Vorobyov, S.A.; Chen, H.H.; Gershman, A.B. On the Relationship Between Robust Minimum Variance Beamformers With Probabilistic and Worst-Case Distortionless Response Constraints. IEEE Trans. Signal Process. 2008, 56, 5719–5724. [Google Scholar] [CrossRef]
- Liu, J.B.; Gui, G.; Xie, W.; Cong, X.C.; Wan, Q.; Adachi, F. Robust Widely Linear Beamforming via an IAA Method for the Augmented IPNCM Reconstruction. IEICE Trans. Fundam. Electron. 2017, E100a, 1562–1566. [Google Scholar] [CrossRef]
- Huang, F.; Sheng, W.X.; Ma, X.F. Modified projection approach for robust adaptive array beamforming. Signal Process. 2012, 92, 1758–1763. [Google Scholar] [CrossRef]
- Jia, W.M.; Jin, W.; Zhou, S.H.; Yao, M.L. Robust adaptive beamforming based on a new steering vector estimation algorithm. Signal Process. 2013, 93, 2539–2542. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, B.; Ye, Z.F. Robust Adaptive Beamforming Using a New Projection Approach. In Proceedings of the 2015 IEEE International Conference on Digital Signal Processing (DSP), Singapore, 21–24 July 2015; pp. 1181–1185. [Google Scholar]
- Yu, Z.L.; Gu, Z.H.; Zhou, J.J.; Li, Y.Q.; Ser, W.; Er, M.H. A Robust Adaptive Beamformer Based on Worst-Case Semi-Definite Programming. IEEE Trans. Signal Process. 2010, 58, 5914–5919. [Google Scholar] [CrossRef]
- Beck, A.; Eldar, Y.C. Doubly constrained robust capon beamformer with ellipsoidal uncertainty sets. IEEE Trans. Signal Process. 2007, 55, 753–758. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Zeng, W.J.; Yasotharan, A.; So, H.C.; Kirubarajan, T. Robust Beamforming by Linear Programming. IEEE Trans. Signal Process. 2014, 62, 1834–1849. [Google Scholar] [CrossRef]
- Zheng, Z.; Zheng, Y.; Wang, W.Q.; Zhang, H.B. Covariance Matrix Reconstruction With Interference Steering Vector and Power Estimation for Robust Adaptive Beamforming. IEEE Trans. Veh. Technol. 2018, 67, 8495–8503. [Google Scholar] [CrossRef]
- Ai, X.Y.; Gan, L. Robust Adaptive Beamforming With Subspace Projection and Covariance Matrix Reconstruction. IEEE Access 2019, 7, 102149–102159. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, X.; Ye, Z. Robust adaptive beamforming via subspace for interference covariance matrix reconstruction. Signal Process. 2020, 167, 107289. [Google Scholar] [CrossRef]
- Chen, P.; Yang, Y.X. An uncertainty-set-shrinkage-based covariance matrix reconstruction algorithm for robust adaptive beamforming. Multidimens. Syst. Signal Process. 2021, 32, 263–279. [Google Scholar] [CrossRef]
- Mallipeddi, R.; Lie, J.P.; Suganthan, P.N.; Razul, S.G.; See, C.M.S. Robust adaptive beamforming based on covariance matrix reconstruction for look direction mismatch. PIER Lett. 2011, 25, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Ruan, H.; de Lamare, R.C. Robust Adaptive Beamforming Using a Low-Complexity Shrinkage-Based Mismatch Estimation Algorithm. IEEE Signal Process. Lett. 2014, 21, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Shen, F.; Chen, F.F.; Song, J.Y. Robust Adaptive Beamforming Based on Steering Vector Estimation and Covariance Matrix Reconstruction. IEEE Commun. Lett. 2015, 19, 1636–1639. [Google Scholar] [CrossRef]
- Mohammadzadeh, S.; Nascimento, V.H.; Lamare, R.C.d.; Kukrer, O. Maximum Entropy-Based Interference-Plus-Noise Covariance Matrix Reconstruction for Robust Adaptive Beamforming. IEEE Signal Process. Lett. 2020, 27, 845–849. [Google Scholar] [CrossRef]
- Mohammadzadeh, S.; Nascimento, V.H.; Lamare, R.C.d.; Kukrer, O. Low-Cost Adaptive Maximum Entropy Covariance Matrix Reconstruction for Robust Beamforming. In Proceedings of the 2020 54th Asilomar Conference on Signals, Systems, and Computers, California, CA, USA, 1–4 November 2020; pp. 1462–1466. [Google Scholar]
- Zhang, Y.P.; Li, Y.J.; Gao, M.G. Robust adaptive beamforming based on the effectiveness of reconstruction. Signal Process. 2016, 120, 572–579. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, J.; Manikas, A. Interference cancellation beamforming robust to pointing errors. IET Signal Process. 2013, 7, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-J.; Feng, D.-Z.; Nie, W.-K.; Lin, S.-Y.; Hu, H.-S. Robust adaptive beamforming algorithm based on damped singular value decomposition regularization. Digit. Signal Process. 2022, 122, 103356. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, T.; Wang, W.Q.; So, H.C. Robust Adaptive Beamforming via Simplified Interference Power Estimation. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 3139–3152. [Google Scholar] [CrossRef]
- Shao, X.; Hu, T.; Zhang, J.; Pan, Y.; Zhang, Z.; Wei, Y. A low-sidelobe adaptive beamforming algorithm with single snapshot. In Proceedings of the IET International Radar Conference (IET IRC 2020), Chongqing, China, 4–6 November 2020; pp. 682–686. [Google Scholar]
- Wang, R.; Wang, Y.; Han, C.; Gong, Y.; Wang, L. Robust Adaptive Beamforming Based on Interference Covariance Matrix Reconstruction and Steering Vector Estimation. In Proceedings of the 2021 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xi’an, China, 17–19 August 2021; pp. 1–5. [Google Scholar]
- Liao, B.; Chan, S.C.; Tsui, K.M. Recursive Steering Vector Estimation and Adaptive Beamforming under Uncertainties. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 489–501. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.J.; Shi, Z.G.; Chen, K.S.; Li, Y. Robust adaptive beamforming for steering vector uncertainties based on equivalent DOAs method. Prog. Electromagn. Res. 2008, 79, 277–290. [Google Scholar] [CrossRef]
- Huang, J.S.; Su, H.T.; Yang, Y. Low-complexity robust adaptive beamforming method for MIMO radar based on covariance matrix estimation and steering vector mismatch correction. IET Radar Sonar Navig. 2019, 13, 712–720. [Google Scholar] [CrossRef]
- Xie, Z.; Zhu, J.H.; Fan, C.Y.; Huang, X.T. An Improved Sub-Array Adaptive Beamforming Technique Based on Multiple Sources of Errors. J. Mar. Sci. Eng. 2020, 8, 757. [Google Scholar] [CrossRef]
- Lee, J.H.; Cheng, K.P.; Wang, C.C. Robust adaptive array beamforming under steering angle mismatch. Signal Process. 2006, 86, 296–309. [Google Scholar] [CrossRef]
- Xu, X.; Ye, Z.F.; Zhang, Y.F. DOA Estimation for Mixed Signals in the Presence of Mutual Coupling. IEEE Trans. Signal Process. 2009, 57, 3523–3532. [Google Scholar] [CrossRef]
- Yang, B.; Li, W.X.; Li, Y.Y.; Zhang, Q. Robust adaptive null broadening beamforming based on subspace projection. Int. J. Electron. 2022, 1–15. [Google Scholar] [CrossRef]
- Gong, C.; Huang, L.; Xu, D.; Ye, Z. Knowledge-aided robust adaptive beamforming with small snapshots. Electron. Lett. 2013, 49, 1258–1259. [Google Scholar] [CrossRef]
- Du, Y.; Cui, W.; Mei, F.; Xu, H.; Wang, Y. Coherent signals adaptive beamforming algorithm based on eigenvalue. In Proceedings of the 2021 2nd International Conference on Electronics, Communications and Information Technology (CECIT), Sanya, China, 27–29 December 2021; pp. 388–393. [Google Scholar]
- Stoica, P.; Li, J.; Tan, X. On spatial power spectrum and signal estimation using the Pisarenko framework. IEEE Trans. Signal Process. 2008, 56, 5109–5119. [Google Scholar] [CrossRef]
- Chen, P.; Zuo, L.; Wang, W. Adaptive Beamforming for Passive Synthetic Aperture with Uncertain Curvilinear Trajectory. Remote Sens. 2021, 13, 2562. [Google Scholar] [CrossRef]
- McCloud, M.L.; Scharf, L.L. A new subspace identification algorithm for high-resolution DOA estimation. IEEE Trans. Antennas Propag. 2002, 50, 1382–1390. [Google Scholar] [CrossRef]
- Yang, B.; Li, W.X.; Li, Y.Y.; Yue, C.Y. Novel robust adaptive beamforming against unknown mutual coupling. J. Electromagn. Waves 2021, 35, 2447–2467. [Google Scholar] [CrossRef]
- Yang, X.P.; Li, Y.Q.; Liu, F.F.; Lan, T.; Long, T.; Sarkar, T.K. Robust Adaptive Beamforming Based on Covariance Matrix Reconstruction With Annular Uncertainty Set and Vector Space Projection. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 130–134. [Google Scholar] [CrossRef]
- Mohammadzadeh, S.; Nascimento, V.H.; Lamare, R.C.D.; Kukrer, O. Robust Adaptive Beamforming Based on Power Method Processing and Spatial Spectrum Matching. In Proceedings of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 4903–4907. [Google Scholar]
- Lu, J.; Yang, J.; Yao, Z.C.; Zhu, F.C.; Yu, Z.Y.; Liu, G.B. Robust wideband adaptive beamforming based on covariance matrix reconstruction in the spatial-frequency domain. IET Microw. Antennas Propag. 2021, 15, 309–322. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Gong, Y.; Yang, X.; Cao, W. Oblique Projection-Based Covariance Matrix Reconstruction and Steering Vector Estimation for Robust Adaptive Beamforming. Electronics 2022, 11, 3478. https://doi.org/10.3390/electronics11213478
Duan Y, Gong Y, Yang X, Cao W. Oblique Projection-Based Covariance Matrix Reconstruction and Steering Vector Estimation for Robust Adaptive Beamforming. Electronics. 2022; 11(21):3478. https://doi.org/10.3390/electronics11213478
Chicago/Turabian StyleDuan, Yanliang, Yanping Gong, Xiaohui Yang, and Weiping Cao. 2022. "Oblique Projection-Based Covariance Matrix Reconstruction and Steering Vector Estimation for Robust Adaptive Beamforming" Electronics 11, no. 21: 3478. https://doi.org/10.3390/electronics11213478
APA StyleDuan, Y., Gong, Y., Yang, X., & Cao, W. (2022). Oblique Projection-Based Covariance Matrix Reconstruction and Steering Vector Estimation for Robust Adaptive Beamforming. Electronics, 11(21), 3478. https://doi.org/10.3390/electronics11213478