A Method Noise-Based Convolutional Neural Network Technique for CT Image Denoising
Abstract
:1. Introduction
1.1. Important Aspects That Contribute to the Degradation of the Overall Quality of CT Scan Images
- Blurring: Patient mobility might cloud CT reconstructions. Uncooperative patients, breathing, heartbeats, etc., might cause patient movement. The patient’s z-direction mobility complicates reconstruction techniques. Image reconstruction techniques use variable locations and spacing to simplify CT image reconstruction. However, patient z-direction movement should be regulated, since picture blurring relies on speed [9].
- (i)
- Equipment operation causes blurring.
- (ii)
- Correct procedure factors.
- (iii)
- Patient movement blurring.
- (iv)
- CT number variation between pixels for homogenous material scans.
- (v)
- Some noise-reduction filter techniques or incorrect settings blur the picture.
- Field of vision (FOV): A CT image reconstruction area. If a reconstructed CT picture is too tiny or large, it may be difficult to spot anomalies and reduce CT image quality [9].
- Artifacts: Unrelated picture distortion or inaccuracy. Artifacts are CT number discrepancies. Beam hardening, partial volume effect, metal artifacts, patient motion, etc.
- (i)
- Beam hardening: An X-ray beam traveling through the patient raises its average energy. Cupping describes this item. To prevent it, one can increase kvp, decrease slice thickness, pre-filter X-rays, avoid high-absorbing locations, and use appropriate algorithms.
- (ii)
- Metal artifact: Dental fillings, prosthetic devices, surgical clips, etc., may obstruct projection data and generate streaking artifacts. Any metal can be removed to lessen this artifact [10].
- (iii)
- Patient motion: Voluntary and involuntary movements may induce streaking in the reconstructed picture. Motion reduction, scan time reduction, immobilization, and placement assistance may help.
- (iv)
- Software and hardware-based artifacts: Poor software inputs and equipment may cause CT image artifacts. Mechanical failure, low gantry rigidity, mechanical assignment, aliasing, detector sampling, staircase, tube arcing, etc., might cause artifacts. Bad reconstruction parameterizations impair CT picture quality. The detector setup, tube current, tube potential, reconstruction method, patient placement, scan range, reconstructed slice thickness, and pitch may be optimized to enhance CT picture quality.
- Visual noise: Noise decreases picture quality. Acquisition, transmission, mathematical calculation, and voxel attenuation coefficient fluctuation may cause CT image noise. Visual noise degrades low-contrast items [10].
1.2. Major Contribution
- A CT image denoising technique is proposed using a hybrid combination of CNN and method noise. Here, method noise is applied as a post-processing operation.
- This hybrid denoising approach is specifically designed for better edge and fine details preservation.
2. Literature Review
3. Proposed Methodology
- Layer 1—Convolutional layers with ReLu, 64 filters each of dimensions 3 × 3 × [no. of channels] to produce 64 feature maps and rectified linear units.
- Channels for gray image = 1; Channels for color image = 3(RGB)
- Layer 2—Convolutional layers, ReLu with batch normalization by adding 64 filters to each of dimensions 3 × 3 × 64, such that batch normalization is added between each convolutional and ReLu layer.
- Layer 3—Final convolutional layer used for image reconstruction via 64 each filter of size 3 × 3 × 64.
4. Experimental Result and Analysis
4.1. Training Dataset
4.2. Testing Dataset
4.3. Qualitative Analysis
4.4. Quantitative Analysis
4.5. Graphical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goel, N.; Yadav, A.; Singh, B.M. Medical image processing: A review. In Proceedings of the 2016 Second International Innovative Applications of Computational Intelligence on Power, Energy and Controls with Their Impact on Humanity (CIPECH), Ghaziabad, India, 18–19 November 2016; pp. 57–62. [Google Scholar]
- Kharrat, A.; Benamrane, N.; Messaoud, M.B.; Abid, M. Detection of brain tumor in medical images. In Proceedings of the 2009 3rd International Conference on Signals, Circuits and Systems (SCS), Medenine, Tunisia, 6–8 November 2009; pp. 1–6. [Google Scholar]
- Rai, H.M.; Chatterjee, K. Hybrid adaptive algorithm based on wavelet transform and independent component analysis for denoising of MRI images. Measurement 2019, 144, 72–82. [Google Scholar] [CrossRef]
- Thanh, D.; Surya, P. A review on CT and X-ray images denoising methods. Informatica 2019, 43, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Uplaonkar, D.S.; Patil, N. An efficient discrete wavelet transform based partial hadamard feature extraction and hybrid neural network based monarch butterfly optimization for liver tumor classification. Eng. Sci. 2021, 16, 354–365. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Chen, M.; Fang, H.; Zhong, S. Two-Stage Convolutional Neural Network for Medical Noise Removal via Image Decomposition. IEEE Trans. Instrum. Meas. 2020, 69, 2707–2721. [Google Scholar] [CrossRef]
- Diwakar, M.; Singh, P. CT image denoising using multivariate model and its method noise thresholding in non-subsampled shearlet domain. Biomed. Signal Process. Control 2020, 57, 101754. [Google Scholar] [CrossRef]
- Tian, C.; Xu, Y.; Li, Z.; Zuo, W.; Fei, L.; Liu, H. Attention-guided CNN for image denoising. Neural Netw. 2020, 124, 117–129. [Google Scholar] [CrossRef]
- Diwakar, M.; Tripathi, A.; Joshi, K.; Memoria, M.; Singh, P. Latest trends on heart disease prediction using machine learning and image fusion. Mater. Today Proc. 2021, 37, 3213–3218. [Google Scholar] [CrossRef]
- Diwakar, M.; Kumar, M. A review on CT image noise and its denoising. Biomed. Signal Process. Control 2018, 42, 73–88. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [Green Version]
- Nanthagopal, A.P.; Sukanesh, R. Wavelet statistical texture features-based segmentation and classification of brain computed tomography images. IET Image Process. 2013, 7, 25–32. [Google Scholar] [CrossRef]
- Elalfi, A.; Eisa, M.; Ahmed, H. Artificial Neural Networks in Medical Images for Diagnosis Heart Valve Diseases. Int. J. Comput. Sci. Issues (IJCSI) 2013, 10, 83. [Google Scholar]
- Mukhopadhyay, S.; Mandal, J.K. Wavelet based denoising of medical images using sub-band adaptive thresholding through genetic algorithm. Procedia Technol. 2013, 10, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Wang, G.; Han, L.; Song, X.; Yang, W. COVID-19 CT image denoising algorithm based on adaptive threshold and optimized weighted median filter. Biomed. Signal Process. Control. 2022, 75, 103552. [Google Scholar] [CrossRef] [PubMed]
- Senthilraja, S.; Suresh, P.; Suganthi, M. Noise Reduction in Computed Tomography Image Using WB–Filter. Int. J. Sci. Eng. Res. 2014, 5, 243–247. [Google Scholar]
- Abrahim, B.A.; Kadah, Y. Speckle noise reduction method combining total variation and wavelet shrinkage for clinical ultrasound imaging. In Proceedings of the 2011 1st Middle East Conference on Biomedical Engineering, Sharjah, United Arab Emirates, 21–24 February 2011; pp. 80–83. [Google Scholar]
- Vanithamani, R.; Umamaheswari, G. Wavelet based despeckling of medical ultrasound images with bilateral filter. In Proceedings of the TENCON 2011-2011 IEEE Region 10 Conference, Bali, Indonesia, 21–24 November 2011; pp. 389–393. [Google Scholar]
- Diwakar, M.; Singh, P.; Karetla, G.R.; Narooka, P.; Yadav, A.; Maurya, R.K.; Gupta, R.; Arias-Gonzáles, J.L.; Singh, M.P.; Naik, N.; et al. Low-Dose COVID-19 CT Image Denoising Using Batch Normalization and Convolution Neural Network. Electronics 2022, 11, 3375. [Google Scholar] [CrossRef]
- Trung, N.T.; Trinh, D.H.; Trung, N.L.; Luong, M. Low-dose CT image denoising using deep convolutional neural networks with extended receptive fields. Signal Image Video Process. 2022, 16, 1963–1971. [Google Scholar] [CrossRef]
- Viswanath, K.; Gunasundari, R.; Hussan, S.A. VLSI implementation and analysis of kidney stone detection by level set segmentation and ANN classification. Procedia Comput. Sci. 2015, 48, 612–622. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Kim, K.; Fakhri, G.E.; Li, Q. A cascaded convolutional neural network for x-ray low-dose CT image denoising. arXiv 2017, arXiv:1705.04267. [Google Scholar]
- Ahn, B.; Cho, N.I. Block-matching convolutional neural network for image denoising. arXiv 2017, arXiv:1704.00524. [Google Scholar]
- Tian, C.; Xu, Y.; Fei, L.; Wang, J.; Wen, J.; Luo, N. Enhanced CNN for image denoising. CAAI Trans. Intell. Technol. 2019, 4, 17–23. [Google Scholar] [CrossRef]
- Gabralla, L.; Mahersia, H.; Zaroug, M. Denoising CT Images using wavelet transform. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2015, 6, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Yi, C.; Shimamura, T. A blind image deconvolution method based on noise variance estimation and blur type reorganization. In Proceedings of the 2011 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), Chiang Mai, Thailand, 7–9 December 2011; pp. 1–6. [Google Scholar]
- Deng, L.J.; Guo, W.; Huang, T.Z. Single-image super-resolution via an iterative reproducing kernel Hilbert space method. IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 2001–2014. [Google Scholar] [CrossRef] [PubMed]
- Elhoseny, M.; Shankar, K. Optimal bilateral filter and convolutional neural network based denoising method of medical image measurements. Measurement 2019, 143, 125–135. [Google Scholar] [CrossRef]
- Wang, X.Y.; Huang, T.Z.; Deng, L.J. Single image super-resolution based on approximated Heaviside functions and iterative refinement. PLoS ONE 2018, 13, e0182240. [Google Scholar] [CrossRef] [PubMed]
- Zuo, W.; Zhang, K.; Zhang, L. Convolutional Neural Networks for Image Denoising and Restoration. In Denoising of Photographic Images and Video; Springer: Cham, Switzerland, 2018; pp. 93–123. [Google Scholar]
- Shahdoosti, H.R.; Rahemi, Z. Edge-preserving image denoising using a deep convolutional neural network. Signal Process. 2019, 159, 20–32. [Google Scholar] [CrossRef]
- Haque, K.N.; Yousuf, M.A.; Rana, R. Image denoising and restoration with CNN-LSTM Encoder Decoder with Direct Attention. arXiv 2018, arXiv:1801.05141. [Google Scholar]
- Valsesia, D.; Fracastoro, G.; Magli, E. Image denoising with graph-convolutional neural networks. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 2399–2403. [Google Scholar]
- Islam, M.T.; Rahman, S.M.; Ahmad, M.O.; Swamy, M.N.S. Mixed Gaussian-impulse noise reduction from images using convolutional neural network. Signal Process. Image Commun. 2018, 68, 26–41. [Google Scholar] [CrossRef]
- Gong, K.; Guan, J.; Liu, C.C.; Qi, J. PET image denoising using a deep neural network through fine tuning. IEEE Trans. Radiat. Plasma Med. Sci. 2018, 3, 153–161. [Google Scholar] [CrossRef]
- Tian, C.; Xu, Y.; Zuo, W. Image denoising using deep CNN with batch renormalization. Neural Netw. 2020, 121, 461–473. [Google Scholar] [CrossRef]
- Singh, P.; Diwakar, M.; Shankar, A.; Shree, R.; Kumar, M. A review on SAR image and its despeckling. Arch. Comput. Methods Eng. 2021, 28, 4633–4653. [Google Scholar] [CrossRef]
- Singh, P.; Diwakar, M.; Cheng, X.; Shankar, A. A new wavelet-based multi-focus image fusion technique using method noise and anisotropic diffusion for real-time surveillance application. J. Real-Time Image Process. 2021, 18, 1051–1068. [Google Scholar] [CrossRef]
- Diwakar, M.; Tripathi, A.; Joshi, K.; Sharma, A.; Singh, P.; Memoria, M.; Kumar, N. A comparative review: Medical image fusion using SWT and DWT. Mater. Today Proc. 2020, 37, 3411–3416. [Google Scholar] [CrossRef]
- Anushka Arya, C.; Tripathi, A.; Singh, P.; Diwakar, M.; Sharma, K.; Pandey, H. Object detection using deep learning: A review. Pap. Presented J. Phys. Conf. Ser. 2021, 1854, 012012. [Google Scholar] [CrossRef]
- Chakraborty, A.; Jindal, M.; Khosravi, M.R.; Singh, P.; Shankar, A.; Diwakar, M. A secure IoT-based cloud platform selection using entropy distance approach and fuzzy set theory. Wirel. Commun. Mob. Comput. 2021, 6697467. [Google Scholar] [CrossRef]
- Dhaundiyal, R.; Tripathi, A.; Joshi, K.; Diwakar, M.; Singh, P. Clustering based multi-modality medical image fusion. Pap. Presented J. Phys. Conf. Ser. 2020, 1478, 012024. [Google Scholar] [CrossRef]
- Kaur, P.; Harnal, S.; Tiwari, R.; Alharithi, F.S.; Almulihi, A.H.; Noya, I.D.; Goyal, N. A hybrid convolutional neural network model for diagnosis of COVID-19 using chest X-ray images. Int. J. Environ. Res. Public Health 2021, 18, 12191. [Google Scholar] [CrossRef]
- Chugh, H.; Gupta, S.; Garg, M.; Gupta, D.; Mohamed, H.G.; Noya, I.D.; Singh, A.; Goyal, N. An Image Retrieval Framework Design Analysis Using Saliency Structure and Color Difference Histogram. Sustainability 2022, 14, 10357. [Google Scholar] [CrossRef]
- Wadhwa, P.; Aishwarya Tripathi, A.; Singh, P.; Diwakar, M.; Kumar, N. Predicting the time period of extension of lockdown due to increase in rate of COVID-19 cases in India using machine learning. Mater. Today Proc. 2020, 37, 2617–2622. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Li, B. Low dose CT image denoising method based on improved generative adversarial network. In Proceedings of the 2022 7th International Conference on Automation, Control and Robotics Engineering (CACRE), Xi’an, China, 14–16 July 2022; pp. 199–203. [Google Scholar]
- Jifara, W.; Jiang, F.; Rho, S.; Cheng, M.; Liu, S. Medical image denoising using convolutional neural network: A residual learning approach. J. Supercomput. 2019, 75, 704–718. [Google Scholar] [CrossRef]
- Gondara, L. Medical image denoising using convolutional denoising autoencoders. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, 12–15 December 2016; pp. 241–246. [Google Scholar]
- CT Image Online Open Access Database. Available online: http://www.via.cornell.edu/databases (accessed on 10 October 2020).
Epochs | PSNR | SSIM |
---|---|---|
1 | 29.99 | 0.8012 |
5 | 29.54 | 0.8152 |
10 | 29.78 | 0.8132 |
15 | 30.17 | 0.8238 |
20 | 31.23 | 0.8236 |
25 | 32.01 | 0.8622 |
30 | 31.43 | 0.9093 |
Noise Variance (Σ) | 10 | 15 | 20 | 25 | 10 | 15 | 20 | 25 |
---|---|---|---|---|---|---|---|---|
Source CT image | 512 × 512 | 512 × 512 | ||||||
Wu. D. et al., 2017 [21] | 32.01 | 26.47 | 24.28 | 23.48 | 31.93 | 28.17 | 27.42 | 25.33 |
Ahn. B. et al., 2017 [22] | 31.23 | 25.73 | 23.57 | 22.33 | 30.27 | 27.57 | 26.32 | 24.67 |
Tian. C. et al., 2019 [23] | 30.17 | 24.48 | 23.76 | 23.98 | 29.17 | 26.46 | 26.11 | 23.33 |
Tian. C. et al., 2020 [35] | 29.99 | 28.01 | 26.51 | 25.07 | 27.21 | 24.34 | 23.54 | 22.78 |
Liang. et al., 2015 [45] | 31.43 | 27.33 | 25.38 | 24.75 | 31.97 | 28.49 | 28.11 | 26.48 |
Jifara. et al., 2019 [46] | 29.78 | 25.33 | 23.96 | 23.65 | 29.64 | 26.13 | 25.22 | 23.33 |
Gondara et al., 2016 [47] | 29.54 | 26.47 | 24.22 | 22.34 | 28.46 | 25.21 | 24.55 | 21.22 |
Proposed | 30.11 | 28.65 | 27.32 | 25.96 | 30.91 | 28.05 | 26.92 | 25.06 |
Source CT image | 512 × 512 | 512 × 512 | ||||||
Wu. D. et al., 2017 [21] | 31.11 | 28.27 | 27.01 | 24.56 | 30.57 | 27.46 | 27.73 | 24.34 |
Ahn. B. et al., 2017 [22] | 30.57 | 27.12 | 26.75 | 23.75 | 29.57 | 26.47 | 26.34 | 22.33 |
Tian. C. et al., 2019 [23] | 29.48 | 26.43 | 25.85 | 22.22 | 28.46 | 25.45 | 25.53 | 23.34 |
Tian. C. et al., 2020 [35] | 31.12 | 28.89 | 27.19 | 25.95 | 31.38 | 28.47 | 28.19 | 25.23 |
Liang. et al., 2015 [45] | 29.89 | 25.43 | 24.97 | 22.10 | 27.45 | 24.62 | 24.76 | 22.64 |
Jifara. et al., 2019 [46] | 29.01 | 24.83 | 23.75 | 21.11 | 26.46 | 23.12 | 23.58 | 21.56 |
Gondara et al., 2016 [47] | 27.02 | 24.19 | 22.34 | 22.35 | 25.45 | 22.12 | 22.23 | 20.97 |
Proposed | 30.48 | 27.38 | 26.57 | 25.93 | 31.95 | 29.58 | 28.58 | 26.76 |
Σ | 10 | 15 | 20 | 25 | 10 | 15 | 20 | 25 |
---|---|---|---|---|---|---|---|---|
Source CT image | CT1 | 512 × 512 | CT3 | 512 × 512 | ||||
Wu. D. et al., 2017 [21] | 0.8352 | 0.8193 | 0.7363 | 0.7543 | 0.7832 | 0.7832 | 0.7653 | 0.7342 |
Ahn. B. et al., 2017 [22] | 0.8132 | 0.7948 | 0.7242 | 0.7345 | 0.7421 | 0.7543 | 0.7419 | 0.7221 |
Tian. C. et al., 2019 [23] | 0.7938 | 0.7531 | 0.6972 | 0.7234 | 0.7313 | 0.7312 | 0.7312 | 0.6736 |
Tian. C. et al., 2020 [35] | 0.8412 | 0.8234 | 0.8112 | 0.7653 | 0.8352 | 0.8181 | 0.7836 | 0.7646 |
Liang. et al., 2015 [45] | 0.7836 | 0.7234 | 0.6553 | 0.6993 | 0.7131 | 0.6934 | 0.7001 | 0.6835 |
Jifara. et al., 2019 [46] | 0.7322 | 0.7039 | 0.6443 | 0.6536 | 0.6938 | 0.6539 | 0.6734 | 0.6231 |
Gondara et al., 2016 [47] | 0.6993 | 0.6837 | 0.6241 | 0.6412 | 0.6373 | 0.6543 | 0.6231 | 0.6009 |
Proposed | 0.9032 | 0.8734 | 0.8527 | 0.8301 | 0.9043 | 0.8632 | 0.8493 | 0.8063 |
Source CT image | CT2 | 512 × 512 | CT4 | 512 × 512 | ||||
Wu. D. et al., 2017 [21] | 0.8312 | 0.7828 | 0.7987 | 0.7535 | 0.8152 | 0.8235 | 0.8032 | 0.7772 |
Ahn. B. et al., 2017 [22] | 0.7938 | 0.7625 | 0.7523 | 0.7183 | 0.7832 | 0.7862 | 0.7928 | 0.7552 |
Tian. C. et al., 2019 [23] | 0.7862 | 0.7548 | 0.7624 | 0.6939 | 0.7763 | 0.7336 | 0.6962 | 0.7054 |
Tian. C. et al., 2020 [35] | 0.8424 | 0.8182 | 0.8123 | 0.7664 | 0.8343 | 0.8124 | 0.8132 | 0.7828 |
Liang. et al., 2015 [45] | 0.7642 | 0.7456 | 0.7242 | 0.6500 | 0.7523 | 0.7063 | 0.6852 | 0.6932 |
Jifara. et al., 2019 [46] | 0.7428 | 0.7532 | 0.7101 | 0.6737 | 0.7437 | 0.6953 | 0.6642 | 0.6734 |
Gondara et al., 2016 [47] | 0.7121 | 0.7323 | 0.6763 | 0.6547 | 0.7198 | 0.6824 | 0.6223 | 0.6543 |
Proposed | 0.9135 | 0.8743 | 0.8431 | 0.8087 | 0.9353 | 0.8932 | 0.8531 | 0.8197 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, P.; Diwakar, M.; Gupta, R.; Kumar, S.; Chakraborty, A.; Bajal, E.; Jindal, M.; Shetty, D.K.; Sharma, J.; Dayal, H.; et al. A Method Noise-Based Convolutional Neural Network Technique for CT Image Denoising. Electronics 2022, 11, 3535. https://doi.org/10.3390/electronics11213535
Singh P, Diwakar M, Gupta R, Kumar S, Chakraborty A, Bajal E, Jindal M, Shetty DK, Sharma J, Dayal H, et al. A Method Noise-Based Convolutional Neural Network Technique for CT Image Denoising. Electronics. 2022; 11(21):3535. https://doi.org/10.3390/electronics11213535
Chicago/Turabian StyleSingh, Prabhishek, Manoj Diwakar, Reena Gupta, Sarvesh Kumar, Alakananda Chakraborty, Eshan Bajal, Muskan Jindal, Dasharathraj K. Shetty, Jayant Sharma, Harshit Dayal, and et al. 2022. "A Method Noise-Based Convolutional Neural Network Technique for CT Image Denoising" Electronics 11, no. 21: 3535. https://doi.org/10.3390/electronics11213535
APA StyleSingh, P., Diwakar, M., Gupta, R., Kumar, S., Chakraborty, A., Bajal, E., Jindal, M., Shetty, D. K., Sharma, J., Dayal, H., Naik, N., & Paul, R. (2022). A Method Noise-Based Convolutional Neural Network Technique for CT Image Denoising. Electronics, 11(21), 3535. https://doi.org/10.3390/electronics11213535