Design of VGSOT-MTJ-Based Logic Locking for High-Speed Digital Circuits
Abstract
:1. Introduction
2. Proposed Work
2.1. Background of VGSOT-MTJ
2.2. Design of Logic-Locking Block Using VGSOT-MTJ
3. Experimental Results
3.1. Logic-Locking Mechanism and Monte Carlo Simulations
3.2. Eye Diagram: Mask Design and Optimization
3.3. Transient Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, W.; Chang, C.-H.; Sengupta, A.; Bhunia, S.; Kastner, R.; Li, H. An Overview of Hardware Security and Trust: Threats, Countermeasures, and Design Tools. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2021, 40, 1010–1038. [Google Scholar] [CrossRef]
- Chakraborty, A.; Jayasankaran, N.G.; Liu, Y.; Rajendran, J.; Sinanoglu, O.; Srivastava, A.; Xie, Y.; Yasin, M.; Zuzak, M. Keynote: A Disquisition on Logic Locking. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 1952–1972. [Google Scholar] [CrossRef]
- Srinivasan, S.; Sarkar, A.; Behin-Aein, B.; Datta, S. All-Spin Logic Device With Inbuilt Nonreciprocity. IEEE Trans. Magn. 2011, 47, 4026–4032. [Google Scholar] [CrossRef] [Green Version]
- Mishra, R.; Yang, H. Emerging Spintronics Phenomena and Applications. IEEE Trans. Magn. 2021, 57, 1–34. [Google Scholar] [CrossRef]
- Ghosh, S. Spintronics and Security: Prospects, Vulnerabilities, Attack Models, and Preventions. Proc. IEEE 2016, 104, 1864–1893. [Google Scholar] [CrossRef]
- Kamali, H.M.; Azar, K.Z.; Farahmandi, F.; Tehranipoor, M. Advances in Logic Locking: Past, Present, and Prospects. Cryptol. Eprint Arch. 2022; Preprint. MINOR revision. [Google Scholar]
- Limaye, N.; Kalligeros, E.; Karousos, N.; Karybali, I.G.; Sinanoglu, O. Thwarting All Logic Locking Attacks: Dishonest Oracle With Truly Random Logic Locking. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2021, 40, 1740–1753. [Google Scholar] [CrossRef]
- Onizawa, N.; Mukaida, S.; Tamakoshi, A.; Yamagata, H.; Fujita, H.; Hanyu, T. High-Throughput/Low-Energy MTJ-Based True Random Number Generator Using a Multi-Voltage/Current Converter. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 2171–2181. [Google Scholar] [CrossRef]
- Divyanshu, D.; Kumar, R.; Khan, D.; Amara, S.; Massoud, Y. Physically Unclonable Function using GSHE driven SOT assisted p-MTJ for next generation hardware security applications. IEEE Access 2022, 10, 93029–93038. [Google Scholar] [CrossRef]
- Divyanshu, D.; Kumar, R.; Khan, D.; Amara, S.; Massoud, Y. Logic Locking Using Emerging 2T/3T Magnetic Tunnel Junctions for Hardware Security. IEEE Access 2022, 10, 102386–102395. [Google Scholar] [CrossRef]
- Kumar, R.; Divyanshu, D.; Khan, D.; Amara, S.; Massoud, Y. Spin Orbit Torque-Assisted Magnetic Tunnel Junction-Based Hardware Trojan. Electronics 2022, 11, 1753. [Google Scholar] [CrossRef]
- Kazemi, M.; Rowlands, G.E.; Ipek, E.; Buhrman, R.A.; Friedman, E.G. Compact Model for Spin–Orbit Magnetic Tunnel Junctions. IEEE Trans. Electron Devices 2016, 63, 848–855. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, H.; Wang, M.; Cai, W.; Zhu, D.; Klein, J.O.; Zhao, W. Proposal of Toggle Spin Torques Magnetic RAM for Ultrafast Computing. IEEE Electron Device Lett. 2019, 40, 726–729. [Google Scholar] [CrossRef]
- Lee, S.-W.; Lee, K.-J. Emerging three-terminal magnetic memory devices. Proc. IEEE 2016, 104, 1831–1843. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, B.; Zhu, J.-G. Field-free magnetization switching by utilizing the spin Hall effect and interlayer exchange coupling of iridium. Sci. Rep. 2019, 9, 325. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Kang, W.; Wang, L.; Wang, K.L.; Zhao, W. Stateful reconfigurable logic via a single-voltage-gated spin Hall effect driven magnetic tunnel junction in a spintronic memory. IEEE Trans. Electron Devices 2017, 64, 4295–4301. [Google Scholar] [CrossRef]
- Lee, K.; Kan, J.; Kang, S.H. Spin-Orbit-Torque Magnetoresistive Random Access Memory with Voltage-Controlled Anisotropy. U.S. Patent No 9,589,619, 7 March 2017. [Google Scholar]
- Bhunia, S.; Tehranipoor, M. Hardware Security: A Hands-On Learning Approach, 1st ed.; Computer and Technology: Cambride, MA, USA, 2019. [Google Scholar]
- Kang, W.; Ran, Y.; Zhang, Y.; Lv, W.; Zhao, W. Modeling and Exploration of the Voltage-Controlled Magnetic Anisotropy Effect for the Next-Generation Low-Power and High-Speed MRAM Applications. IEEE Trans. Nanotechnol. 2017, 16, 387–395. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, D.; Wang, C.; Zeng, L.; Wang, Y.; Zhao, W. Compact Modeling and Analysis of Voltage-Gated Spin-Orbit Torque Magnetic Tunnel Junction. IEEE Access 2020, 8, 50792–50800. [Google Scholar] [CrossRef]
- Massoud, Y.; Nieuwoudt, A. Modeling and design challenges and solutions for carbon nanotube-based interconnect in future high performance integrated circuits. Acm J. Emerg. Technol. Comput. Syst. 2006, 2, 155–196. [Google Scholar] [CrossRef]
- Nieuwoudt, A.; Massoud, Y. Predicting the Performance of Low-Loss On-Chip Inductors Realized Using Carbon Nanotube Bundles. IEEE Trans. Electron Devices 2008, 55, 298–312. [Google Scholar] [CrossRef]
- Massoud, Y.; Ismail, Y. Grasping the Impact of On-Chip Inductance in High Speed ICs. IEEE Circuits Devices Mag. 2001, 17, 14–21. [Google Scholar] [CrossRef]
- Eachempati, S.; Nieuwoudt, A.; Gayasen, A.; Narayanan, V.; Massoud, Y. Assessing Carbon Nanotube Bundle Interconnect for Future FPGA Architectures. In Proceedings of the IEEE Design Automation and Test in Europe, Nice, France, 16–20 April 2007. [Google Scholar]
- Nieuwoudt, A.; Ragheb, T.; Nejati, H.; Massoud, Y. Increasing Manufacturing Yield for Wideband RF CMOS LNAs in the Presence of Process Variations. In Proceedings of the IEEE Symposium on Quality Electronic Design, Washington, DC, USA, 26–28 March 2007. [Google Scholar]
- Nieuwoudt, A.; Mondal, M.; Massoud, Y. Predicting the Performance and Reliability of Carbon Nanotube Bundles for On-Chip Interconnect. In Proceedings of the IEEE ASP Design Automation Conference, Yokohama, Japan, 23–26 January 2007. [Google Scholar]
- Nieuwoudt, A.; Massoud, Y. Accurate Resistance Modeling for Carbon Nanotube Bundles in VLSI Interconnect. In Proceedings of the IEEE Conference on Nanotechnology, Cincinnati, OH, USA, 17–20 July 2006. [Google Scholar]
- Nieuwoudt, A.; Massoud, Y. Assessing the Implications of Process Variations on Future Carbon Nanotube Bundle Interconnect Solutions. In Proceedings of the IEEE Symposium on Quality Electronic Design, San Jose, CA, USA, 26–28 March 2007. [Google Scholar]
- Nieuwoudt, A.; Massoud, Y. Performance Implications of Inductive Effects for Carbon Nanotube Bundle Interconnect. IEEE Electron Devices Lett. 2007, 28, 305–307. [Google Scholar] [CrossRef]
- Massoud, Y.; Majors, S.; Bustami, T.; White, J. Layout techniques for minimizing on-chip interconnect self-inductance. In Proceedings of the 35th ACM/IEEE-CAS/EDAC Design Automation Conference (Cat. No.98CH36175), San Francisco, CA, USA, 15–19 June 1998; pp. 566–571. [Google Scholar]
- Massoud, Y.; Kawa, J.; MacMillen, D.; White, J. Modeling and analysis of differential signaling for minimizing inductive crosstalk. In Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232), Las Vegas, NV, USA, 22 June 2001; pp. 804–809. [Google Scholar]
- Massoud, Y.; White, J. FastMag: A 3-D magnetostatic inductance extraction program for structures with permeable materials. In Proceedings of the IEEE/ACM International Conference on Computer Aided Design, 2002. ICCAD 2002, San Jose, CA, USA, 10–14 November 2002; pp. 478–484. [Google Scholar]
- Massoud, Y.; Majors, S.; Kawa, J.; Bustami, T.; MacMillen, D.; White, J. Managing on-chip inductive effects. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2002, 10, 789–798. [Google Scholar] [CrossRef] [Green Version]
- Massoud, Y.; White, J. Simulation and modeling of the effect of substrate conductivity on coupling inductance and circuit crosstalk. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2002, 10, 286–291. [Google Scholar] [CrossRef]
- Ragheb, T.; Massoud, Y. On the modeling of resistance in Graphene Nanoribbon (GNR) for future interconnect applications. In Proceedings of the 2008 International Conference on Computer-Aided Design (ICCAD’08), San Jose, CA, USA, 10–13 November 2008. [Google Scholar]
Parameter | Magnitude | Unit |
---|---|---|
MTJ dimension | 50 × 50 | nm |
MTJ surface area | × D/4 | - |
AFM dimension (L, W, H) | 60 × 50 × 3 | nm |
Damping coefficient and TMR | 0.05, 1.2 | - |
Oxide- and free-layer thickness | 1.4, 1.1 | nm |
Saturation magnetization and | 6.25 × 10, −50 | A/m, Oe |
Polarization factor and spin Hall angle | 0.58, 0.25 | - |
VCMA coefficient | 60 | fJ/V·m |
Gyromagnetic ratio | 2.2127 × 10 | m/(A·s) |
PV | R SD(kΩ) | R SD(kΩ) | Success Ratio |
---|---|---|---|
5% | 155.5 | 53.11 | 42.85% |
10% | 159.95 | 56.75 | 38.57% |
Traditional SOT MTJ | VGSOT-MTJ | |
---|---|---|
−98 A | −6.2619 A | |
Switching delay | 2.5 ns | 3 ns |
Switching error rate | 0.225 | 0 |
Switching energy | 10.68 fJ/bit | 0.08 fJ/bit |
Parameters | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 * |
---|---|---|---|---|---|
(PV = 0, NON = 0, RV = 0) | (PV = 0, NON = 1, RV = 0) | (PV = 3%, NON = 0, RV = 1) | (PV = 3%, NON = 1, RV = 1) | (PV = 3%, NON = 1, RV = 2) | |
Level 0: Mean | 7.573 mV | 4.782 mV | 6.216 mV | 12.44 mV | 12.96 mV |
Level 0: SD | 8.744 mV | 5.099 mV | 6.709 mV | 10.51 mV | 15.72 mV |
Level 1: Mean | 994.3 mV | 994.3 mV | 994.3 mV | 994.6 mV | 994.3 mV |
Level 1: SD | 2.804 mV | 2.74 mV | 3.042 mV | 2.702 mV | 2.77 mV |
Eye Amplitude | 986.8 mV | 989.5 mV | 988.1 mV | 982.2 mV | 981.3 mV |
Eye height | 952.1 mV | 966 mV | 958.8 mV | 942.6 mV | 925.9 mV |
Eye width | 4.513 ns | 4.504 ns | 4.366 ns | 4.436 ns | 4.423 ns |
Eye S/N | 85.45 | 126.2 | 101.3 | 74.34 | 53.08 |
Eye rise time | 14.01 ps | 14.05 ps | 14.03 ps | 13.93 ps | 13.93 ps |
Eye fall time | 364.2 ps | 361.2 ps | 379.2 ps | 432.7 ps | 398.2 ps |
Random jitter | 53.80 ps | 54.84 ps | 78.84 ps | 61.56 ps | 64.87 ps |
Deterministic jitter | 164.3 ps | 166.7 ps | 161.2 ps | 194.4 ps | 188.2 ps |
Parameters | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 * |
---|---|---|---|---|---|
Average rise time | 14.04 ps | 14.04 ps | 14.04 ps | 14.03 ps | 14.04 ps |
Average fall time | 359.96 ps | 386.06 ps | 382.96 ps | 451.17 ps | 404.16 ps |
Undershoot | 6.30% | 6.30% | 6.29% | 6.32% | 6.30% |
Overshoot | 10.91% | 10.87% | 10.91% | 10.91% | 10.97% |
Average slew rate—rising edge | 42.56 V/ns | 42.56 V/ns | 42.56 V/ns | 42.60 V/ns | 42.56 V/ns |
Average slew rate—falling edge | 1.68 V/ns | 1.57 V/ns | 1.58 V/ns | 1.38 V/ns | 1.54 V/ns |
Duty cycle (first cycle) | 51.70% | 51.66% | 51.71% | 52.15% | 51.79% |
RMS value | 802.4 mV | 801.2 mV | 802.9 mV | 803.7 mV | 803.1 mV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Divyanshu, D.; Kumar, R.; Khan, D.; Amara, S.; Massoud, Y. Design of VGSOT-MTJ-Based Logic Locking for High-Speed Digital Circuits. Electronics 2022, 11, 3537. https://doi.org/10.3390/electronics11213537
Divyanshu D, Kumar R, Khan D, Amara S, Massoud Y. Design of VGSOT-MTJ-Based Logic Locking for High-Speed Digital Circuits. Electronics. 2022; 11(21):3537. https://doi.org/10.3390/electronics11213537
Chicago/Turabian StyleDivyanshu, Divyanshu, Rajat Kumar, Danial Khan, Selma Amara, and Yehia Massoud. 2022. "Design of VGSOT-MTJ-Based Logic Locking for High-Speed Digital Circuits" Electronics 11, no. 21: 3537. https://doi.org/10.3390/electronics11213537
APA StyleDivyanshu, D., Kumar, R., Khan, D., Amara, S., & Massoud, Y. (2022). Design of VGSOT-MTJ-Based Logic Locking for High-Speed Digital Circuits. Electronics, 11(21), 3537. https://doi.org/10.3390/electronics11213537