Detection and Classification of Tomato Crop Disease Using Convolutional Neural Network
Abstract
:1. Introduction
2. Literature Survey
3. Methodology
3.1. Dataset
3.2. Convolution Neural Network
4. Result and Discussion
4.1. Performance Analysis
4.2. Transfer Learning Techniques
4.3. Comparison of Transfer Learning Techniques with CNN
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hassan, S.M.; Maji, A.K.; Jasiński, M.; Leonowicz, Z.; Jasińska, E. Identification of Plant-Leaf Diseases Using CNN and Transfer-Learning Approach. Electronics 2021, 10, 1388. [Google Scholar] [CrossRef]
- Habiba, S.U.; Islam, M.K. Tomato Plant Diseases Classification Using Deep Learning Based Classifier From Leaves Images. In Proceedings of the 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), Dhaka, Bangladesh, 27–28 February 2021; pp. 82–86. [Google Scholar]
- Bedi, P.; Gole, P. Plant disease detection using hybrid model based on convolutional autoencoder and convolutional neural network. Artif. Intell. Agric. 2021, 5, 90–101. [Google Scholar] [CrossRef]
- Fazari, A.; Pellicer-Valero, O.J.; Gómez-Sanchís, J.; Bernardi, B.; Cubero, S.; Benalia, S.; Zimbalatti, G.; Blasco, J. Application of deep convolutional neural networks for the detection of anthracnose in olives using VIS/NIR hyperspectral images. Comput. Electron. Agric. 2021, 187, 106252. [Google Scholar] [CrossRef]
- Sambasivam, G.; Opiyo, G.D. A predictive machine learning application in agriculture: Cassava disease detection and classification with imbalanced dataset using convolutional neural networks. Egypt. Inform. J. 2021, 22, 27–34. [Google Scholar] [CrossRef]
- Afonso, M.; Blok, P.M.; Polder, G.; van der Wolf, J.M.; Kamp, J. Blackleg Detection in Potato Plants using Convolutional Neural Networks. This project was funded by: Branche Organisation Arable Farming (BO-Akkerbouw), Dutch Farmers Organisation (LTO-Nederland), Kverneland Mechatronics, Agrico, HZPC, NAK and the Dutch Topsector AgriFood ”Op naar precisielandbouw 2.0” (AF-14275). IFAC-PapersOnLine 2019, 52, 6–11. [Google Scholar] [CrossRef]
- Wang, F.; Wang, R.; Xie, C.; Zhang, J.; Li, R.; Liu, L. Convolutional neural network based automatic pest monitoring system using hand-held mobile image analysis towards non-site-specific wild environment. Comput. Electron. Agric. 2021, 187, 106268. [Google Scholar] [CrossRef]
- Picon, A.; Seitz, M.; Alvarez-Gila, A.; Mohnke, P.; Ortiz-Barredo, A.; Echazarra, J. Crop conditional Convolutional Neural Networks for massive multi-crop plant disease classification over cell phone acquired images taken on real field conditions. Comput. Electron. Agric. 2019, 167, 105093. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Zhang, C.; Wang, X.; Shi, Y. Cucumber leaf disease identification with global pooling dilated convolutional neural network. Comput. Electron. Agric. 2019, 162, 422–430. [Google Scholar] [CrossRef]
- Ashraf, R.; Habib, M.A.; Akram, M.U.; Latif, M.A.; Malik, M.S.; Awais, M.; Dar, S.H.; Mahmood, T.; Yasir, M.; Abbas, Z. Deep Convolution Neural Network for Big Data Medical Image Classification. IEEE Access 2020, 8, 105659–105670. [Google Scholar] [CrossRef]
- Reddy, T.V.; Rekha, K.S. Deep Leaf Disease Prediction Framework (DLDPF) with Transfer Learning for Automatic Leaf Disease Detection. In Proceedings of the 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 8–10 April 2021; pp. 1408–1415. [Google Scholar] [CrossRef]
- Mishra, S.; Sachan, R.; Rajpal, D. Deep Convolutional Neural Network based Detection System for Real-time Corn Plant Disease Recognition. Procedia Comput. Sci. 2020, 167, 2003–2010. [Google Scholar] [CrossRef]
- Pham, T.N.; Tran, L.V.; Dao, S.V.T. Early Disease Classification of Mango Leaves Using Feed-Forward Neural Network and Hybrid Metaheuristic Feature Selection. IEEE Access 2020, 8, 189960–189973. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, H. Plant disease detection based on region-based segmentation and KNN classifier. In Proceedings of the International Conference on ISMAC in Computational Vision and Bio-Engineering 2018, Palladam, India, 16–17 May 2018; pp. 1667–1675. [Google Scholar]
- Zeng, Q.; Ma, X.; Cheng, B.; Zhou, E.; Pang, W. GANs-Based Data Augmentation for Citrus Disease Severity Detection Using Deep Learning. IEEE Access 2020, 8, 172882–172891. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, Z.; Zhou, S.; Xing, J.; Wu, Q.; Song, J. Grape Leaf Spot Identification Under Limited Samples by Fine Grained-GAN. IEEE Access 2021, 9, 100480–100489. [Google Scholar] [CrossRef]
- Tang, Z.; Yang, J.; Li, Z.; Qi, F. Grape disease image classification based on lightweight convolution neural networks and channelwise attention. Comput. Electron. Agric. 2020, 178, 105735. [Google Scholar] [CrossRef]
- Zhang, X.; Qiao, Y.; Meng, F.; Fan, C.; Zhang, M. Identification of Maize Leaf Diseases Using Improved Deep Convolutional Neural Networks. IEEE Access 2018, 6, 30370–30377. [Google Scholar] [CrossRef]
- Ishengoma, F.S.; Rai, I.A.; Said, R.N. Identification of maize leaves infected by fall armyworms using UAV-based imagery and convolutional neural networks. Comput. Electron. Agric. 2021, 184, 106124. [Google Scholar] [CrossRef]
- Tavakoli, H.; Alirezazadeh, P.; Hedayatipour, A.; Nasib, A.H.B.; Landwehr, N. Leaf image-based classification of some common bean cultivars using discriminative convolutional neural networks. Comput. Electron. Agric. 2021, 181, 105935. [Google Scholar] [CrossRef]
- Patel1, S.; Jaliya1, U.K.; Patel1, P. A Survey on Plant Leaf Disease Detection. Int. J. Mod. Trends Sci. Technol. 2020, 6, 129–134. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Thirty-First AAAI Conference on Artificial Intelligence. Inception-ResNet and the Impact of Residual Connections on Learning. arXiv 2016, arXiv:1602.07261. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar] [CrossRef]
- Özbılge, E.; Ulukök, M.K.; Toygar, Ö.; Ozbılge, E. Tomato Disease Recognition Using a Compact Convolutional Neural Network. IEEE Access 2022, 10, 77213–77224. [Google Scholar] [CrossRef]
- Juyal, P.; Sharma, S. Detecting the Infectious area along with Disease using Deep Learning in tomato Plant Leaves. In Proceedings of the 3rd International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi, India, 3–5 December 2020. [Google Scholar] [CrossRef]
- Tm, P.; Pranathi, A.; SaiAshritha, K.; Chittaragi, N.B.; Koolagudi, S.G. Tomato Leaf Disease Detection using Convolutional Neural Networks. In Proceedings of the Innovations in Intelligent Systems and Applications Conference (ASYU), Coimbatore, India, 10–12 June 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Zemouri, R.; Zerhouni, N.; Racoceanu, D. Deep Learning in the Biomedical Applications: Recent and Future Status. Appl. Sci. 2019, 9, 1526. [Google Scholar] [CrossRef] [Green Version]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed]
Layer(Type) | Output Shape | Param # |
---|---|---|
conv2d_2 (Conv2D) | (None, 128, 128, 32) | 0 |
max_pooling2d_2 (MaxPooling 2D) | (None, 64, 64, 32) | 0 |
conv2d_3 (Conv2D) | (None, 64, 64, 32) | 9248 |
max_pooling2d_3 (MaxPooling 2D) | (None, 32, 32, 32) | 0 |
flatten_1 (Flatten) | (None, 8192) | 0 |
dense_2 (Dense) 1048704 | (None, 128) | 0 |
dense_3 (Dense) | (None, 10) | (None, 10) |
Total params: 1,060,138 Trainable params: 1,060,138 Non-trainable params: 0 |
Epoch | Training | Validation | Time/Step | ||
---|---|---|---|---|---|
Loss | Accuracy | Loss | Accuracy | ||
100 | 0.9867 | 0.5671 | 1.0017 | 0.4944 | 19,289 ms |
200 | 0.9612 | 0.6938 | 0.9758 | 0.6211 | 19,287 ms |
300 | 0.9030 | 0.9857 | 0.9301 | 0.8478 | 28,419 ms |
Classes | Precision | Recall | Fl-Score | Support |
---|---|---|---|---|
0 | 0.93 | 0.71 | 0.81 | 90 |
1 | 0.62 | 0.78 | 0.69 | 90 |
2 | 0.89 | 1 | 0.94 | 90 |
3 | 0.85 | 0.63 | 0.73 | 90 |
4 | 0.92 | 0.68 | 0.73 | 90 |
5 | 0.83 | 0.98 | 0.9 | 90 |
6 | 0.8 | 0.73 | 0.76 | 90 |
7 | 0.79 | 0.72 | 0.76 | 90 |
8 | 0.71 | 0.86 | 0.77 | 90 |
9 | 0.82 | 0.94 | 0.88 | 90 |
accuracy | 0.8 | 900 | ||
macro avg | 0.82 | 0.8 | 0.8 | 900 |
weighted avg | 0.82 | 0.8 | 0.8 | 900 |
Classes | Precision | Recall | F1-Score | Support |
---|---|---|---|---|
0 | 1 | 0.98 | 0.99 | 210 |
1 | 0.97 | 1 | 0.98 | 210 |
2 | 0.99 | 1 | 1 | 210 |
3 | 1 | 0.99 | 1 | 210 |
4 | 1 | 0.97 | 0.99 | 210 |
5 | 0.99 | 1 | 1 | 210 |
6 | 0.99 | 0.99 | 0.99 | 210 |
7 | 1 | 1 | 1 | 210 |
8 | 0.99 | 0.99 | 0.99 | 210 |
9 | 1 | 1 | 1 | 210 |
accuracy | 0.99 | 2100 | ||
macro avg | 0.99 | 0.99 | 0.99 | 2100 |
weighted avg | 0.99 | 0.99 | 0.99 | 2100 |
Transfer Learning | Training | Validation | ||
---|---|---|---|---|
Loss | Accuracy | Loss | Accuracy | |
VGG 19 | 0.1870 | 0.9256 | 1.1144 | 0.7014 |
ResNet 152 | 0.6556 | 0.7321 | 0.7968 | 0.6958 |
Inception V3 | 0.3632 | 0.9702 | 5.1024 | 0.8024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakkarvarthi, G.; Sathianesan, G.W.; Murugan, V.S.; Reddy, A.J.; Jayagopal, P.; Elsisi, M. Detection and Classification of Tomato Crop Disease Using Convolutional Neural Network. Electronics 2022, 11, 3618. https://doi.org/10.3390/electronics11213618
Sakkarvarthi G, Sathianesan GW, Murugan VS, Reddy AJ, Jayagopal P, Elsisi M. Detection and Classification of Tomato Crop Disease Using Convolutional Neural Network. Electronics. 2022; 11(21):3618. https://doi.org/10.3390/electronics11213618
Chicago/Turabian StyleSakkarvarthi, Gnanavel, Godfrey Winster Sathianesan, Vetri Selvan Murugan, Avulapalli Jayaram Reddy, Prabhu Jayagopal, and Mahmoud Elsisi. 2022. "Detection and Classification of Tomato Crop Disease Using Convolutional Neural Network" Electronics 11, no. 21: 3618. https://doi.org/10.3390/electronics11213618
APA StyleSakkarvarthi, G., Sathianesan, G. W., Murugan, V. S., Reddy, A. J., Jayagopal, P., & Elsisi, M. (2022). Detection and Classification of Tomato Crop Disease Using Convolutional Neural Network. Electronics, 11(21), 3618. https://doi.org/10.3390/electronics11213618