A Conceptual Model for Investigating the Effect of Privacy Concerns on E-Commerce Adoption: A Study on United Arab Emirates Consumers
Abstract
:1. Introduction
2. Theoretical Model and Research Model
2.1. Internet Safety Perceptions
2.2. Privacy Concern
2.3. Personal Interest
2.4. E-Commerce Acceptance
2.5. Differences as Mediator (GENDER)
3. Methodology
3.1. Data Collection
3.2. Context and Subjects
3.3. Study Instrument
- The participants’ private details are included in the first part.
- The second part shows the five elements that best illustrate the basic issue of acceptability of e-commerce and willingness to transact.
- The final portion has nine measures that highlight perceptions of Internet safety, personal interests, and privacy concerns.
3.4. Pre-Test of the Questionnaire
4. Findings and Discussion
4.1. Data Analysis
4.2. Measurement Model Assessment
4.3. Importance-Performance Map Analysis
4.4. Hypotheses Testing and Coefficient of Determination
- E-commerce acceptance (EA) significantly influenced safety perceptions (SP) (β = 0.251, p < 0.001), privacy concern (PC) (β = 0.513, p < 0.001), and personal interest (PI) (β = 0.651, p < 0.001), supporting hypotheses H1, H4, and H6, respectively.
- Privacy concern (PC) had significant effects on safety perceptions (SP) (β = 0.768, p < 0.001); hence, H3 was supported. Finally, the results revealed that willingness to transact (WTT) significantly influenced safety perceptions (SP) (β = 0.241, p < 0.001), privacy concern (PC) (β = 0.476, p < 0.001), personal interest (PI) (β = 0.749, p < 0.05), and e-commerce acceptance (EA) (β = 0.569, p < 0.001), supporting hypotheses H2, H5, H7, and H8, respectively.
5. Discussion
6. Theoretical and Practical Implications
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dinev, T.; Hart, P. An Extended Privacy Calculus Model for E-Commerce Transactions. Inf. Syst. Res. 2006, 17, 61–80. [Google Scholar] [CrossRef]
- Fatima, R.; Yasin, A.; Liu, L.; Wang, J. How persuasive is a phishing email? A phishing game for phishing awareness. J. Comput. Secur. 2019, 27, 581–612. [Google Scholar] [CrossRef]
- Mason, R.O. Four Ethical Issues of the Information Age. MIS Q. 1986, 10, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Westin, A.F. Privacy and Freedom; Ig Publishing: Athens, NY, USA, 1967. [Google Scholar]
- Culnan, M.J.; Williams, C.C. How Ethics Can Enhance Organizational Privacy: Lessons from the Choicepoint and TJX Data Breaches. MIS Q. 2009, 33, 673–687. [Google Scholar] [CrossRef]
- Smith, H.J.; Dinev, T.; Xu, H. Information Privacy Research: An Interdisciplinary Review. MIS Q. 2011, 35, 989–1015. [Google Scholar] [CrossRef] [Green Version]
- Nielson, N.V. E-Commerce: Evolution or Revolution in the Fast-Moving Consumer Goods World? Nielsen Norman Group: Fremont, CA, USA, 2014. [Google Scholar]
- Rose, E.A. An examination of the concern for information privacy in the New Zealand regulatory context. Inf. Manag. 2006, 43, 322–335. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Jalil, M.A.; Man, M. Extending the TAM to examine the effects of quality features on mobile learning acceptance. J. Comput. Educ. 2016, 3, 453–485. [Google Scholar] [CrossRef]
- Milberg, S.J.; Smith, H.J.; Burke, S.J. Information Privacy: Corporate Management and National Regulation. Organ. Sci. 2000, 11, 35–57. [Google Scholar] [CrossRef]
- Bellman, S.; Johnson, E.J.; Kobrin, S.J.; Lohse, G.L. International Differences in Information Privacy Concerns: A Global Survey of Consumers. Inf. Soc. 2004, 20, 313–324. [Google Scholar] [CrossRef]
- Lim, K.H.; Leung, K.; Sia, C.L.; Lee, M.K.O. Is eCommerce boundary-less? Effects of individualism–collectivism and uncertainty avoidance on Internet shopping. J. Int. Bus. Stud. 2004, 35, 545–559. [Google Scholar] [CrossRef]
- Cheryan, S.; Plaut, V.C.; Handron, C.; Hudson, L. The Stereotypical Computer Scientist: Gendered Media Representations as a Barrier to Inclusion for Women. Sex Roles 2013, 69, 58–71. [Google Scholar] [CrossRef]
- International Monetary Fund. World Economic Outlook Report. 2014. Available online: http://www.imf.org/external/pubs/ft/%0Aweo/2014/02/pdf/text.pdf (accessed on 7 June 2022).
- Dinev, T.; Bellotto, M.; Hart, P.; Russo, V.; Serra, I.; Colautti, C. Privacy calculus model in e-commerce—A study of Italy and the United States. Eur. J. Inf. Syst. 2006, 15, 389–402. [Google Scholar] [CrossRef]
- Almousa, M. Barriers to E-Commerce Adoption: Consumers’ Perspectives from a Developing Country. iBusiness 2013, 5, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Chai, L.; Pavlou, P. What drives electronic commerce across cultures? A cross-cultural empirical investigation of the theory of planned behavior. J. Electron. Commer. Res. 2002, 3, 240–253. [Google Scholar]
- Almaiah, M.A.; Alismaiel, O.A. Examination of factors influencing the use of mobile learning system: An empirical study. Educ. Inf. Technol. 2019, 24, 885–909. [Google Scholar] [CrossRef]
- Norberg, P.A.; Horne, D.R.; Horne, D.A. The privacy paradox: Personal information disclosure intentions versus behaviors. J. Consum. Aff. 2007, 41, 100–126. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Al-Khasawneh, A.; Althunibat, A. Exploring the critical challenges and factors influencing the E-learning system usage during COVID-19 pandemic. Educ. Inf. Technol. 2020, 25, 5261–5280. [Google Scholar] [CrossRef]
- Almaiah, M.A. Acceptance and usage of a mobile information system services in University of Jordan. Educ. Inf. Technol. 2018, 23, 1873–1895. [Google Scholar] [CrossRef]
- Chan, S.-C.; Lu, M.-T. Understanding Internet banking adoption and user behavior: A Hong Kong perspective. J. Glob. Inf. Manag. 2004, 12, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Gefen, G. TAM or just plain habit: A look at experienced online shoppers. J. Organ. End User Comput. 2003, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Hatlevik, O.E.; Christophersen, K.-A. Digital competence at the beginning of upper secondary school: Identifying factors explaining digital inclusion. Comput. Educ. 2013, 63, 240–247. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Al-Khasawneh, A. Investigating the main determinants of mobile cloud computing adoption in university campus. Educ. Inf. Technol. 2020, 25, 3087–3107. [Google Scholar] [CrossRef]
- Ihme, J.M.; Senkbeil, M. Warum können Jugendliche ihre eigenen computerbezogenen Kompetenzen nicht realistisch einschätzen? Z. Entwickl. Pädagogische Psychol. 2017, 49, 24–37. [Google Scholar] [CrossRef]
- Ellemers, N. Gender stereotypes. Annu. Rev. Psychol. 2018, 69, 275–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almaiah, M.A.; Al-Rahmi, A.M.; Alturise, F.; Alrawad, M.; Alkhalaf, S.; Lutfi, A.; Al-Rahmi, W.M.; Awad, A.B. Factors influencing the adoption of internet banking: An integration of ISSM and UTAUT with price value and perceived risk. Front. Psychol. 2022, 13. [Google Scholar] [CrossRef]
- Gnambs, T. The development of gender differences in information and communication technology (ICT) literacy in middle adolescence. Comput. Hum. Behav. 2021, 114, 106533. [Google Scholar] [CrossRef]
- Aburayya, A.; Alshurideh, M.; Marzouqi, A.A.; Diabat, O.A.; Alfarsi, A.; Suson, R.; Bash, M.; Salloum, S.A. An empirical examination of the effect of TQM practices on hospital service quality: An assessment study in uae hospitals. Syst. Rev. Pharm. 2020, 11, 347–362. [Google Scholar]
- Al-Maroof, R.; Ayoubi, K.; Alhumaid, K.; Aburayya, A.; Alshurideh, M.; Alfaisal, R.; Salloum, S. The acceptance of social media video for knowledge acquisition, sharing and application: A comparative study among YouTube users and TikTok Users’ for medical purposes. Int. J. Data Netw. Sci. 2021, 5, 197–214. [Google Scholar] [CrossRef]
- Nunnally, J.C.; Bernstein, I.H. Psychometric Theory; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 3; SmartPLS: Bönningstedt, Germany, 2015. [Google Scholar]
- Hair, J.; Hollingsworth, C.L.; Randolph, A.B.; Chong, A.Y.L. An updated and expanded assessment of PLS-SEM in in-formation systems research. Ind. Manag. Data Syst. 2017, 117, 442–458. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Urbach, N.; Ahlemann, F. Structural equation modeling in information systems research using partial least squares. J. Inf. Technol. Theory Appl. 2010, 11, 5–40. [Google Scholar]
- Goodhue, D.L.; Lewis, W.; Thompson, R. Does PLS have adavantages for small sample size or non-normal data? MIS Q. 2012, 36, 981–1001. [Google Scholar] [CrossRef] [Green Version]
- Barclay, D.; Higgins, C.; Thompson, R. The Partial Least Squares (pls) Approach to Casual Modeling: Personal Computer Adoption and Use as an Illustration. Technol. Stud. 1995, 2, 285–309. [Google Scholar]
- Al Nafea, R.; Almaiah, M.A. Cyber security threats in cloud: Literature review. In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; IEEE: Piscataway, NJ, USA; pp. 779–786. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; The Guilford Press: New York, NY, USA, 2015. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. In New Challenges to International Marketing; Sinkovics, R.R., Ghauri, P.N., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2009; pp. 277–319. [Google Scholar] [CrossRef] [Green Version]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Ringle, C.M.; Sarstedt, M. Gain more insight from your PLS-SEM results. Ind. Manag. Data Syst. 2016, 116, 1865–1886. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Al-Emran, M.; Arpaci, I.; Salloum, S.A. An empirical examination of continuous intention to use m-learning: An integrated model. Educ. Inf. Technol. 2020, 25, 2899–2918. [Google Scholar] [CrossRef]
- Salloum, S.A.; Alhamad, A.Q.M.; Al-Emran, M.; Monem, A.A.; Shaalan, K. Exploring Students’ Acceptance of E-Learning through the Development of a Comprehensive Technology Acceptance Model. IEEE Access 2019, 7, 128445–128462. [Google Scholar] [CrossRef]
- Al-Maroof, R.; Alshurideh, M.; Salloum, S.; AlHamad, A.Q.M.; Gaber, T. Acceptance of Google Meet during the Spread of Coronavirus by Arab University Students. Informatics 2021, 8, 24. [Google Scholar] [CrossRef]
- Al-Maroof, R.S.; Salloum, S.A.; AlHamad, A.; Shaalan, K.A. Understanding an Extension Technology Acceptance Model of Google Translation: A Multi-Cultural Study in United Arab Emirates. Int. J. Interact. Mob. Technol. 2020, 14, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Al-Maroof, R.S.; Salloum, S.A. An Integrated Model of Continuous Intention to Use of Google Classroom. In Recent Advances in Intelligent Systems and Smart Applications; Al-Emran, M., Shaalan, K., Hassanien, A., Eds.; Springer: Cham, Switzerland, 2021; Volume 295. [Google Scholar]
- Preacher, K.J.; Hayes, A.F. Asymptotic and Resampling Strategies for Assessing and Comparing Indirect Effects in Multiple Mediator Models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Santos-Vijande, M.L.; López-Sánchez, J.; Rudd, J. Frontline employees’ collaboration in industrial service innovation: Routes of co-creation’s effects on new service performance. J. Acad. Mark. Sci. 2016, 44, 350–375. [Google Scholar] [CrossRef]
- Changchit, C.; Cutshall, R. Online Shopping Perceptions: A Comparison between Anglo and Hispanic Perspectives. J. Int. Manag. Stud. 2012, 12, 17–26. [Google Scholar]
- Yang, H.-L.; Miao, X.-M. Concern for Information Privacy and Intention to Transact Online. In Proceedings of the 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, China, 12–14 October 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Al Mulhem, A. Analysis of the essential factors affecting of intention to use of mobile learning applications: A comparison between universities adopters and non-adopters. Educ. Inf. Technol. 2019, 24, 1433–1468. [Google Scholar] [CrossRef]
- Awad, N.F.; Krishnan, M.S. The personalization privacy paradox: An empirical evaluation of information transparency and the willingness to be profiled online for personalization. MIS Q. 2006, 30, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Bélanger, F.; Crossler, R.E. Privacy in the Digital Age: A Review of Information Privacy Research in Information Systems. MIS Q. 2011, 35, 1017–1041. [Google Scholar] [CrossRef] [Green Version]
- Almaiah, M.A.; Alfaisal, R.; Salloum, S.A.; Hajjej, F.; Shishakly, R.; Lutfi, A.; Alrawad, M.; Al Mulhem, A.; Alkhdour, T.; Al-Maroof, R.S. Measuring Institutions’ Adoption of Artificial Intelligence Applications in Online Learning Environments: Integrating the Innovation Diffusion Theory with Technology Adoption Rate. Electronics 2022, 11, 3291. [Google Scholar] [CrossRef]
- Van Slyke, C.; Comunale, C.L.; Belanger, F. Gender differences in perceptions of web-based shopping. Commun. ACM 2002, 45, 82–86. [Google Scholar] [CrossRef]
- Jones, M.L.; Alony, I. The Cultural Impact of Information Systems—Through the Eyes of Hofstede—A Critical Journey; Informing Science Institute: Santa Rosa, CA, USA, 2007. [Google Scholar]
- Almaiah, M.A.; Al-Khasawneh, A.; Althunibat, A.; Almomani, O. Exploring the Main Determinants of Mobile Learning Application Usage during COVID-19 Pandemic in Jordanian Universities. In Emerging Technologies during the Era of COVID-19 Pandemic; Springer: Cham, Switzerland, 2021; pp. 275–290. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Al Mulhem, A. Thematic analysis for classifying the main challenges and factors influencing the successful implementation of e-learning system using NVivo. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 142–152. [Google Scholar] [CrossRef]
- Althunibat, A.; Almaiah, M.A.; Altarawneh, F. Examining the Factors Influencing the Mobile Learning Applications Usage in Higher Education during the COVID-19 Pandemic. Electronics 2021, 10, 2676. [Google Scholar] [CrossRef]
- Lutfi, A.; Alsyouf, A.; Almaiah, M.A.; Alrawad, M.; Abdo, A.A.K.; Al-Khasawneh, A.L.; Ibrahim, N.; Saad, M. Factors Influencing the Adoption of Big Data Analytics in the Digital Transformation Era: Case Study of Jordanian SMEs. Sustainability 2022, 14, 1802. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Hajjej, F.; Lutfi, A.; Al-Khasawneh, A.; Alkhdour, T.; Almomani, O.; Shehab, R. A Conceptual Framework for Determining Quality Requirements for Mobile Learning Applications Using Delphi Method. Electronics 2022, 11, 788. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Ayouni, S.; Hajjej, F.; Lutfi, A.; Almomani, O.; Awad, A.B. Smart Mobile Learning Success Model for Higher Educational Institutions in the Context of the COVID-19 Pandemic. Electronics 2022, 11, 1278. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Al-Otaibi, S.; Lutfi, A.; Almomani, O.; Awajan, A.; Alsaaidah, A.; Alrawad, M.; Awad, A.B. Employing the TAM Model to Investigate the Readiness of M-Learning System Usage Using SEM Technique. Electronics 2022, 11, 1259. [Google Scholar] [CrossRef]
- Alsyouf, A.; Lutfi, A.; Al-Bsheish, M.; Jarrar, M.T.; Al-Mugheed, K.; Almaiah, M.A.; Alhazmi, F.N.; Masa’deh, R.E.; Anshasi, R.J.; Ashour, A. Exposure Detection Applications Acceptance: The Case of COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 7307. [Google Scholar] [CrossRef]
- Lutfi, A.; Al-Khasawneh, A.L.; Almaiah, M.A.; Alsyouf, A.; Alrawad, M. Business Sustainability of Small and Medium Enterprises during the COVID-19 Pandemic: The Role of AIS Implementation. Sustainability 2022, 14, 5362. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Hajjej, F.; Shishakly, R.; Lutfi, A.; Amin, A.; Awad, A.B. The Role of Quality Measurements in Enhancing the Usability of Mobile Learning Applications during COVID-19. Electronics 2022, 11, 1951. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Alfaisal, R.; Salloum, S.A.; Al-Otaibi, S.; Al Sawafi, O.S.; Al-Maroof, R.S.; Lutfi, A.; Alrawad, M.; Al Mulhem, A.; Awad, A.B. Determinants Influencing the Continuous Intention to Use Digital Technologies in Higher Education. Electronics 2022, 11, 2827. [Google Scholar] [CrossRef]
- Lutfi, A.; Alrawad, M.; Alsyouf, A.; Almaiah, M.A.; Al-Khasawneh, A.; Al-Khasawneh, A.L.; Alshira’H, A.F.; Alshirah, M.H.; Saad, M.; Ibrahim, N. Drivers and impact of big data analytic adoption in the retail industry: A quantitative investigation applying structural equation modeling. J. Retail. Consum. Serv. 2023, 70. [Google Scholar] [CrossRef]
Constructs | Items | Instrument | Sources |
---|---|---|---|
E-commerce Acceptance | EA1 | I provided Internet access to my personal information. | [22,23] |
EA2 | I have confidence in businesses to manage my personal information posted on the Internet safely. | ||
EA3 | I believe Internet websites are genuine. | ||
Privacy Concern | PC1 | I am apprehensive regarding how someone might handle the information I post on the Internet. | [1,15] |
PC2 | I am concerned regarding who will be able to acquire the information I post on the Internet. | ||
PC3 | I am concerned that the private information I provided might end up on the Internet. | ||
Personal Interest | PI1 | I firmly consider that any concerns or risks related to my privacy are outweighed by my personal interest in getting the information, goods, and/or services I need via the Internet. | [1,15] |
PI2 | The stronger the necessity for particular information, products, or services, the more important it is to prioritize it over privacy issues and accompanying dangers on the Internet. | ||
PI3 | I consider that the necessity to access particular information, goods, and/or services via the Internet is typically more important than privacy concerns. | ||
Internet Safety Perception | SP1 | I think it is safe to share information over the Internet. | [1] |
SP2 | I think it is safe to do business via the Internet. | ||
SP3 | I think user-submitted personal information is handled safely and systematically by Internet websites. | ||
Willingness to Transact | WTT1 | I think it is okay to use your credit card and provide personal information to purchase items and services online. | [1,15] |
WTT2 | I think that, to obtain some information that is accessible on the Internet, one should provide personal information, including correct and authenticable personal information and perhaps credit card information. | ||
WTT3 | I assent to engaging in sales transactions on the Internet, including the exchange of personal information. |
Construct | Cronbach’s Alpha |
---|---|
EA | 0.886 |
PC | 0.805 |
PI | 0.814 |
SP | 0.903 |
WTT | 0.864 |
Constructs | Items | Factor Loading | Cronbach’s Alpha | CR | PA | AVE |
---|---|---|---|---|---|---|
E-commerce Acceptance | EA1 | 0.872 | 0.776 | 0.871 | 0.773 | 0.694 |
EA2 | 0.870 | |||||
EA3 | 0.750 | |||||
Privacy Concern | PC1 | 0.820 | 0.899 | 0.930 | 0.902 | 0.768 |
PC2 | 0.760 | |||||
PC3 | 0.862 | |||||
Personal Interest | PI1 | 0.874 | 0.811 | 0.876 | 0.813 | 0.638 |
PI2 | 0.715 | |||||
PI3 | 0.776 | |||||
Safety Perceptions | SP1 | 0.852 | 0.835 | 0.890 | 0.842 | 0.669 |
SP2 | 0.884 | |||||
SP3 | 0.798 | |||||
Willingness to Transact | WTT1 | 0.866 | 0.790 | 0.904 | 0.798 | 0.826 |
WTT2 | 0.896 | |||||
WTT3 | 0.921 |
EA | PC | PI | SP | WTT | |
---|---|---|---|---|---|
EA | 0.833 | - | - | - | - |
PC | 0.714 | 0.818 | - | - | - |
PI | 0.536 | 0.696 | 0.899 | - | - |
SP | 0.746 | 0.768 | 0.531 | 0.876 | - |
WTT | 0.703 | 0.490 | 0.644 | 0.666 | 0.909 |
EA | PC | PI | SP | WTT | |
---|---|---|---|---|---|
EA | - | - | - | - | - |
PC | 0.685 | - | - | - | - |
PI | 0.560 | 0.444 | - | - | - |
SP | 0.686 | 0.575 | 0.666 | - | - |
WTT | 0.579 | 0.595 | 0.695 | 0.694 | - |
Constructs | R2 | Results |
---|---|---|
EA | 0.505 | Moderate |
SP | 0.390 | Moderate |
WTT | 0.449 | Moderate |
- | (1) | - |
H | Relationship | Path | t-Value | p-Value | Direction | Decision |
---|---|---|---|---|---|---|
H1 | SP ≥ EA | 0.251 | 4.599 | 0.000 | Positive | Supported ** |
H2 | SP ≥ WTT | 0.241 | 3.356 | 0.001 | Positive | Supported ** |
H3 | PC ≥ SP | 0.768 | 27.407 | 0.000 | Positive | Supported ** |
H4 | PC ≥ EA | 0.513 | 18.166 | 0.002 | Positive | Supported ** |
H5 | PC ≥ WTT | 0.476 | 4.731 | 0.000 | Positive | Supported ** |
H6 | PI ≥ EA | 0.651 | 8.527 | 0.000 | Positive | Supported ** |
H7 | PI ≥WTT | 0.749 | 9.558 | 0.000 | Positive | Supported ** |
H8 | EA ≥ WTT | 0.569 | 5.846 | 0.000 | Positive | Supported ** |
H | Relationship | Path a IV → Mediator | Path b Mediator → DV | Indirect Effect | SE Standard Deviation | t-Value | Bootstrapped Confidence Interval | Decision | |
---|---|---|---|---|---|---|---|---|---|
95% LL | 95% UL | ||||||||
M1 | SP * GENDER ≥ EA | 0.522 | 0.607 | 0.317 | 0.085 | 6.015 | 0.150 | 0.483 | Supported |
M2 | SP * GENDER ≥ WTT | 0.377 | 0.607 | 0.229 | 0.102 | 5.413 | 0.029 | 0.429 | Supported |
M3 | PC * GENDER ≥ EA | 0.208 | 0.607 | 0.126 | 0.143 | 6.164 | −0.154 | 0.407 | Not supported |
M4 | PC * GENDER ≥ WTT | 0.416 | 0.607 | 0.253 | 0.039 | 6.164 | 0.176 | 0.329 | Supported |
M5 | PI * GENDER ≥ EA | 0.732 | 0.607 | 0.444 | 0.021 | 6.164 | 0.403 | 0.485 | Supported |
M6 | PI * GENDER ≥ WTT | 0.529 | 0.607 | 0.321 | 0.086 | 6.164 | 0.153 | 0.490 | Supported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akour, I.; Alnazzawi, N.; Alshurideh, M.; Almaiah, M.A.; Al Kurdi, B.; Alfaisal, R.M.; Salloum, S. A Conceptual Model for Investigating the Effect of Privacy Concerns on E-Commerce Adoption: A Study on United Arab Emirates Consumers. Electronics 2022, 11, 3648. https://doi.org/10.3390/electronics11223648
Akour I, Alnazzawi N, Alshurideh M, Almaiah MA, Al Kurdi B, Alfaisal RM, Salloum S. A Conceptual Model for Investigating the Effect of Privacy Concerns on E-Commerce Adoption: A Study on United Arab Emirates Consumers. Electronics. 2022; 11(22):3648. https://doi.org/10.3390/electronics11223648
Chicago/Turabian StyleAkour, Iman, Noha Alnazzawi, Muhammad Alshurideh, Mohammed Amin Almaiah, Barween Al Kurdi, Raghad M. Alfaisal, and Said Salloum. 2022. "A Conceptual Model for Investigating the Effect of Privacy Concerns on E-Commerce Adoption: A Study on United Arab Emirates Consumers" Electronics 11, no. 22: 3648. https://doi.org/10.3390/electronics11223648
APA StyleAkour, I., Alnazzawi, N., Alshurideh, M., Almaiah, M. A., Al Kurdi, B., Alfaisal, R. M., & Salloum, S. (2022). A Conceptual Model for Investigating the Effect of Privacy Concerns on E-Commerce Adoption: A Study on United Arab Emirates Consumers. Electronics, 11(22), 3648. https://doi.org/10.3390/electronics11223648