A New Energy-Aware Method for Gas Lift Allocation in IoT-Based Industries Using a Chemical Reaction-Based Optimization Algorithm
Abstract
:1. Introduction
- Minimizing the gas injection using a multi-objective CRO algorithm;
- Improving energy consumption using a multi-objective CRO algorithm;
- Maximizing the battery life of IoT nodes using a multi-objective CRO algorithm;
- Minimizing the cost using a multi-objective CRO algorithm.
- To the best of our knowledge, this paper is the first study of gas injection optimization in the IoT-based petrochemical industry;
- A novel energy-aware optimization based on a chemical reaction optimization algorithm is proposed to optimize the sustainable utilization of resources;
- The comparison is conducted comprehensively with the consideration of various performance parameters, such as oil production rate, gas injection rate, energy, battery consumption and cost;
- The following is the structure of the article: Section 2 investigates the associated works and their advantages and disadvantages. Section 3 addresses the proposed scheme to solve the gas lift allocation problem in the IoT-based production industry. The following section discusses the simulation findings, and the final section presents the conclusion and future work.
2. Related Work
Research Gap
3. Model Design
3.1. System Model
3.1.1. Problem Statement
3.1.2. Proposed Approach
4. Experimental Results
4.1. Determining the Fitness Function
4.2. Stability of the Algorithm for the Fitness Function
4.3. Energy Consumption
4.4. Battery Life
4.5. Gas Injection Usage
4.6. Cost
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wang, K.; Zhang, B.; Alenezi, F.; Li, S. Communication-efficient surrogate quantile regression for non-randomly distributed system. Inf. Sci. 2022, 588, 425–441. [Google Scholar] [CrossRef]
- Liu, Y.; Li, B.; Lei, X.; Liu, S.; Zhu, H.; Ding, E.; Ning, P. Novel method for high-performance simultaneous removal of NOx and SO2 by coupling yellow phosphorus emulsion with red mud. Chem. Eng. J. 2022, 428, 131991. [Google Scholar] [CrossRef]
- Lu, S.; Guo, J.; Liu, S.; Yang, B.; Liu, M.; Yin, L.; Zheng, W. An Improved Algorithm of Drift Compensation for Olfactory Sensors. Appl. Sci. 2022, 12, 9529. [Google Scholar] [CrossRef]
- Shang, K.; Chen, Z.; Liu, Z.; Song, L.; Zheng, W.; Yang, B.; Liu, S.; Yin, L. Haze prediction model using deep recurrent neural network. Atmosphere 2021, 12, 1625. [Google Scholar] [CrossRef]
- Duan, Q.; Sun, D.; Li, G.; Yang, G.; Yan, W.W. IoT-Enabled Service for Crude-Oil Production Systems Against Unpredictable Disturbance. IEEE Trans. Serv. Comput. 2020, 13, 759–768. [Google Scholar] [CrossRef]
- Azam, F.; Munir, R.; Ahmed, M.; Ayub, M.; Sajid, A.; Abbasi, Z. Internet of Things (Iot), Security Issues and Its Solutions. Sci. Herit. J. GWS 2019, 3, 18–21. [Google Scholar] [CrossRef]
- Gali, S.; Nidumolu, V. An intelligent trust sensing scheme with metaheuristic based secure routing protocol for Internet of Things. Clust. Comput. 2021, 25, 1779–1789. [Google Scholar] [CrossRef]
- Cao, K.; Ding, H.; Wang, B.; Lv, L.; Tian, J.; Wei, Q.; Gong, F. Enhancing physical layer security for IoT with non-orthogonal multiple access assisted semi-grant-free transmission. IEEE Internet Things J. 2022, 1. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D. Using the internet of things in smart energy systems and networks. Sustain. Cities Soc. 2021, 68, 102783. [Google Scholar] [CrossRef]
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. Smart Manufacturing and Tactile Internet Based on 5G in Industry 4.0: Challenges, Applications and New Trends. Electronics 2021, 10, 3175. [Google Scholar] [CrossRef]
- Song, F.; Ma, Y.; You, I.; Zhang, H. Smart Collaborative Evolvement for Virtual Group Creation in Customized Industrial IoT. IEEE Trans. Netw. Sci. Eng. 2022, 1–11. [Google Scholar] [CrossRef]
- Min, Q.; Lu, Y.; Liu, Z.; Su, C.; Wang, B. Machine Learning based Digital Twin Framework for Production Optimization in Petrochemical Industry. Int. J. Inf. Manag. 2019, 49, 502–519. [Google Scholar] [CrossRef]
- Lei, G.; Silva, T.L.; Stanko, M. Compact formulations for efficient early-phase field development optimization of multi-reservoir fields. Comput. Chem. Eng. 2021, 150, 107319. [Google Scholar] [CrossRef]
- Wang, G.; Nixon, M.; Boudreaux, M. Toward Cloud-Assisted Industrial IoT Platform for Large-Scale Continuous Condition Monitoring. Proc. IEEE 2019, 107, 1193–1205. [Google Scholar] [CrossRef]
- Nafees, N.; Ahmed, S.; Kakkar, V.; Bahar, A.N.; Wahid, K.A.; Otsuki, A. QCA-Based PIPO and SIPO Shift Registers Using Cost-Optimized and Energy-Efficient D Flip Flop. Electronics 2022, 11, 3237. [Google Scholar] [CrossRef]
- Liu, K.; Ke, F.; Huang, X.; Yu, R.; Lin, F.; Wu, Y.; Ng, D.W.K. DeepBAN: A temporal convolution-based communication framework for dynamic WBANs. IEEE Trans. Commun. 2021, 69, 6675–6690. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, D.; Cai, G.; Lyu, L.; Koh, L.H.; Wang, T. An optimal dispatch model for virtual power plant that incorporates carbon trading and green certificate trading. Int. J. Electr. Power Energy Syst. 2023, 144, 108558. [Google Scholar] [CrossRef]
- Mahdiani, M.R.; Khamehchi, E. Stabilizing gas lift optimization with different amounts of available lift gas. J. Nat. Gas Sci. Eng. 2015, 26, 18–27. [Google Scholar] [CrossRef]
- Namdar, H. Developing an improved approach to solving a new gas lift optimization problem. J. Pet. Explor. Prod. Technol. 2019, 9, 2965–2978. [Google Scholar] [CrossRef] [Green Version]
- Rahmawati, S.D.; Chandra, S.; Aziz, P.A.; Daton, W.N.; Gaol, A.H.L. Integrated application of flow pattern map for long-term gas lift optimization: A case study of Well T in Indonesia. J. Pet. Explor. Prod. Technol. 2020, 10, 1635–1641. [Google Scholar] [CrossRef]
- Miresmaeili, S.O.H.; Pourafshary, P.; Farahani, F.J. A novel multi-objective estimation of distribution algorithm for solving gas lift allocation problem. J. Nat. Gas Sci. Eng. 2015, 23, 272–280. [Google Scholar] [CrossRef]
- Lam, A.Y.S.; Li, V.O.K. Chemical Reaction Optimization: A tutorial. Memetic Comput. 2012, 4, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Yang, Z.; Zhang, T.; Hu, G. A random chemical reaction optimization algorithm based on dual containers strategy for multi-rotor UAV path planning in transmission line inspection. Concurr. Comput. Pract. Exp. 2019, 31, e4658. [Google Scholar] [CrossRef]
- Bechikh, S.; Chaabani, A.; Ben Said, L. An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization. IEEE Trans. Cybern. 2015, 45, 2051–2064. [Google Scholar] [CrossRef] [PubMed]
- Derouiche, A.; Layeb, A.; Habbas, Z. Chemical Reaction Optimization Metaheuristic for Solving Association Rule Mining Problem. In Proceedings of the 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), Hammamet, Tunisia, 30 October–3 November 2017. [Google Scholar]
- Islam, M.R.; Mahmud, M.R.; Pritom, R.M. Transportation scheduling optimization by a collaborative strategy in supply chain management with TPL using chemical reaction optimization. Neural Comput. Appl. 2020, 32, 3649–3674. [Google Scholar] [CrossRef]
- Bargaoui, H.; Driss, O.B.; Ghédira, K. Towards a Distributed Implementation of Chemical Reaction Optimization for the Multi-factory Permutation Flowshop Scheduling Problem. Procedia Comput. Sci. 2017, 112, 1531–1541. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Hei, X.; Li, W.; Jiang, Q. A decomposition-based chemical reaction optimization for multi-objective vehicle routing problem for simultaneous delivery and pickup with time windows. Memetic Comput. 2018, 10, 103–120. [Google Scholar] [CrossRef]
- Ghaedi, M.; Ghotbi, C.; Aminshahidy, B. The Optimization of Gas Allocation to a Group of Wells in a Gas Lift Using an Efficient Ant Colony Algorithm (ACO). Energy Sources Part Recovery Util. Environ. Eff. 2014, 36, 1234–1248. [Google Scholar] [CrossRef]
- Jung, S.-Y.; Lim, J.-S. Optimization of gas lift allocation for improved oil production under facilities constraints. Geosystem Eng. 2016, 19, 39–47. [Google Scholar] [CrossRef]
- López, S.; Koç, U.; Bakker, E.; Rahmani, J. Optimization of Lift Gas Allocation using Evolutionary Algorithms. Int. J. Comput. Appl. Technol. Res. (IJCATR) 2019. [Google Scholar] [CrossRef]
- Fadilah, S.M.R.; Adiwijaya; Aditsania, A. Optimization of gas injection allocation to increase oil production using Gbest-guided artificial bee colony algorithm. J. Phys. Conf. Ser. 2019, 1192, 012049. [Google Scholar] [CrossRef]
- AlJuboori, M.; Hossain, M.; Al-Fatlawi, O.; Kabir, A.; Radhi, A. Numerical Simulation of Gas Lift Optimization Using Genetic Algorithm for a Middle East Oil Field: Feasibility Study. In Proceedings of the International Petroleum Technology Conference, Dhahran, Saudi Arabia, 13–15 January 2020. [Google Scholar] [CrossRef]
- Sawadogo, V.; Diallo, A. A synergy between the genetic algorithm and simulated annealing in a gas allocation optimization problem. Ann. Electr. Electron. Eng. 2020, 3, 1–7. [Google Scholar] [CrossRef]
- Shen, Y.; Ding, N.; Zheng, H.-T.; Li, Y.; Yang, M. Modeling relation paths for knowledge graph completion. IEEE Trans. Knowl. Data Eng. 2020, 33, 3607–3617. [Google Scholar] [CrossRef]
- Deng, L.; Olalotiti-Lawal, F.; Davani, E.; Castiñeira, D. Hypervolume-Based Multiobjective Optimization for Gas Lift Systems. In Proceedings of the SPE Oklahoma City Oil and Gas Symposium, Oklahoma City, OK, USA, 9–10 April 2019. [Google Scholar] [CrossRef]
- Yue, L.; Guan, Z.; Zhang, L.; Ullah, S.; Cui, Y. Multi objective lotsizing and scheduling with material constraints in flexible parallel lines using a Pareto based guided artificial bee colony algorithm. Comput. Ind. Eng. 2019, 128, 659–680. [Google Scholar] [CrossRef]
- Hamedi, H.; Khamehchi, E. A Nonlinear Approach to Gas Lift Allocation Optimization with Operational Constraints Using Particle Swarm Optimization and a Penalty Function. Pet. Sci. Technol. 2012, 30, 775–785. [Google Scholar] [CrossRef]
- Shokir, E.M.E.-M.; Hamed, M.M.B.; Ibrahim, A.E.-S.B.; Mahgoub, I. Gas Lift Optimization Using Artificial Neural Network and Integrated Production Modeling. Energy Fuels 2017, 31, 9302–9307. [Google Scholar] [CrossRef]
- Hamedi, H.; Rashidi, F.; Khamehchi, E. A Novel Approach to the Gas-Lift Allocation Optimization Problem. Pet. Sci. Technol. 2011, 29, 418–427. [Google Scholar] [CrossRef]
- Namdar, H.; Shahmohammadi, M.A. Optimization of production and lift-gas allocation to producing wells by a new developed GLPC correlation and a simple optimization method. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 2616–2630. [Google Scholar] [CrossRef]
- Ghaedi, M.; Ghotbi, C.; Aminshahidy, B. Optimization of Gas Allocation to a Group of Wells in Gas Lift in One of the Iranian Oil Fields Using an Efficient Hybrid Genetic Algorithm (HGA). Pet. Sci. Technol. 2013, 31, 949–959. [Google Scholar] [CrossRef]
- Rasouli, H.; Rashidi, F.; Karimi, B.; Khamehchi, E. A Surrogate Integrated Production Modeling Approach to Long-Term Gas-Lift Allocation Optimization. Chem. Eng. Commun. 2015, 202, 647–654. [Google Scholar] [CrossRef]
- Chen, B.; Reynolds, A.C. Optimal control of ICV’s and well operating conditions for the water-alternating-gas injection process. J. Pet. Sci. Eng. 2017, 149, 623–640. [Google Scholar] [CrossRef]
- Kosmidis, V.D.; Perkins, J.D.; Pistikopoulos, E.N. A mixed integer optimization formulation for the well scheduling problem on petroleum fields. Comput. Chem. Eng. 2005, 29, 1523–1541. [Google Scholar] [CrossRef]
- Lam, A.Y.S.; Li, V.O.K. Chemical-Reaction-Inspired Metaheuristic for Optimization. IEEE Trans. Evol. Comput. 2010, 14, 381–399. [Google Scholar] [CrossRef] [Green Version]
- De, A.; Pratap, S.; Kumar, A.; Tiwari, M.K. A hybrid dynamic berth allocation planning problem with fuel costs considerations for container terminal port using chemical reaction optimization approach. Ann. Oper. Res. 2020, 290, 783–811. [Google Scholar] [CrossRef] [Green Version]
- Bargaoui, H.; Driss, O.B.; Ghédira, K. A novel chemical reaction optimization for the distributed permutation flowshop scheduling problem with makespan criterion. Comput. Ind. Eng. 2017, 111, 239–250. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Z.; Zhang, J.; Wang, Z. A blocking flow shop deteriorating scheduling problem via a hybrid chemical reaction optimization. Adv. Mech. Eng. 2017, 9, 1687814017701371. [Google Scholar] [CrossRef]
- Szeto, W.Y.; Wang, Y.; Wong, S.C. The Chemical Reaction Optimization Approach to Solving the Environmentally Sustainable Network Design Problem. Comput.-Aided Civ. Infrastruct. Eng. 2014, 29, 140–158. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, K.; Bhattacharya, A.; Dey, S.H.N. Chemical reaction optimization applied in economic dispatch problems. In Proceedings of the 2014 First International Conference on Automation, Control, Energy and Systems (ACES), Adisaptagram, India, 1–2 February 2014. [Google Scholar]
- Szeto, W.; Liu, Y.; Ho, S.C. Chemical reaction optimization for solving a static bike repositioning problem. Transp. Res. Part D Transp. Environ. 2016, 47, 104–135. [Google Scholar] [CrossRef]
- Bandekar, A.; Kotian, A.; Javaid, A.Y. Comparative Analysis of Simulation and Real-World Energy Consumption for Battery-Life Estimation of Low-Power IoT (Internet of Things) Deployment in Varying Environmental Conditions Using Zolertia Z1 Motes. In Sensor Systems and Software; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Dang, W.; Guo, J.; Liu, M.; Liu, S.; Yang, B.; Yin, L.; Zheng, W. A semi-supervised extreme learning machine algorithm based on the new weighted kernel for machine smell. Appl. Sci. 2022, 12, 9213. [Google Scholar] [CrossRef]
Paper | Method | Gas Injection Rate | Oil Production Rate | Convergence Rate | Energy Consumption | Cost | Battery Life |
---|---|---|---|---|---|---|---|
[29] | Continuous ant colony optimization algorithm (CACO) | √ | √ | √ | 🗴 | 🗴 | 🗴 |
[21] | Estimation of distribution (EAD) algorithm | √ | √ | 🗴 | 🗴 | 🗴 | 🗴 |
[30] | Genetic algorithm (GA) | √ | √ | 🗴 | 🗴 | 🗴 | 🗴 |
[31] | Particle swarm optimization (PSO), genetic algorithm (GA) and neural network (ANN) algorithm | √ | √ | √ | 🗴 | 🗴 | 🗴 |
[32] | Gbest-guided artificial bee colony algorithm | √ | √ | 🗴 | 🗴 | 🗴 | 🗴 |
[33] | Genetic algorithm (GA) | √ | √ | 🗴 | 🗴 | √ | 🗴 |
[34] | Simulated annealing and genetic algorithm | √ | √ | √ | 🗴 | 🗴 | 🗴 |
Gas Lift Injection Rate (Mscf/d) | Oil Production Rate (stb/d) | |||
---|---|---|---|---|
PROD1 | PROD2 | PROD3 | PROD4 | |
0 | 1109.18 | 871.60 | 1797.22 | 861.38 |
1000 | 2578.96 | 2289.11 | 3670.33 | 2224.58 |
2000 | 2793.62 | 2469.31 | 4052.92 | 2393.29 |
3000 | 2866.02 | 2537.89 | 4184.09 | 2459.41 |
4000 | 2903.19 | 2572.95 | 4221.06 | 2492.62 |
5000 | 2914.13 | 2583.14 | 4221.06 | 2502.07 |
6000 | 2909.45 | 2579.43 | 4203.25 | 2498.32 |
7000 | 2893.64 | 2565.74 | 4173.65 | 2485.04 |
8000 | 2869.60 | 2544.65 | 4131.46 | 2464.70 |
9000 | 2839.27 | 2517.91 | 4081.22 | 2438.99 |
10,000 | 2804.00 | 2486.65 | 4024.52 | 2409.02 |
Parameter | Value |
---|---|
Initial-KE | 10,000 |
MoleColl | 0.2 |
α | 200 |
β | 100 |
KELossRate | 0.5 |
Compression cost (dollar/hhp/hour) | 3 |
Buffer | 2000 |
Population size | 200 |
Iteration_max | 180 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanbouri, K.; Razoughi Bastak, M.; Alizadeh, S.M.; Jafari Navimipour, N.; Yalcin, S. A New Energy-Aware Method for Gas Lift Allocation in IoT-Based Industries Using a Chemical Reaction-Based Optimization Algorithm. Electronics 2022, 11, 3769. https://doi.org/10.3390/electronics11223769
Zanbouri K, Razoughi Bastak M, Alizadeh SM, Jafari Navimipour N, Yalcin S. A New Energy-Aware Method for Gas Lift Allocation in IoT-Based Industries Using a Chemical Reaction-Based Optimization Algorithm. Electronics. 2022; 11(22):3769. https://doi.org/10.3390/electronics11223769
Chicago/Turabian StyleZanbouri, Kouros, Mostafa Razoughi Bastak, Seyed Mehdi Alizadeh, Nima Jafari Navimipour, and Senay Yalcin. 2022. "A New Energy-Aware Method for Gas Lift Allocation in IoT-Based Industries Using a Chemical Reaction-Based Optimization Algorithm" Electronics 11, no. 22: 3769. https://doi.org/10.3390/electronics11223769
APA StyleZanbouri, K., Razoughi Bastak, M., Alizadeh, S. M., Jafari Navimipour, N., & Yalcin, S. (2022). A New Energy-Aware Method for Gas Lift Allocation in IoT-Based Industries Using a Chemical Reaction-Based Optimization Algorithm. Electronics, 11(22), 3769. https://doi.org/10.3390/electronics11223769