A New Nano-Scale and Energy-Optimized Reversible Digital Circuit Based on Quantum Technology
Abstract
:1. Introduction
- Proposing a new reversible block in QCA technology;
- Simulating the proposed block using the QCADesigner-E tool; and
- Calculating some parameters, such as the number of constant inputs, garbage outputs, latency, and quantum cost, and comparing to current designs.
2. Basic Concepts and Related Works
2.1. QCA Cell and Wire
2.2. Majority and Inverter Gates
2.3. QCA Clocking
- Switch: The cell exits non-polar mode and gradually approaches the input value of the cell before it.
- Hold: During this phase, the cell’s energy level is high, the cell is active, and it can act as an input for the following cell.
- Release: The cell’s energy level gradually drops such that it does not affect its neighbors.
- Relax: The cell loses energy and enters a state of relaxation.
2.4. QCA Faults
2.5. Reversible QCA
2.6. Related Works
3. The Proposed Designs in This Study
4. Simulation Tools, Parameters, and Results
Accuracy Analysis and Comparisons
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bahar, A.N.; Uddin, M.S.; Abdullah-Al-Shafi, M.; Bhuiyan, M.M.R.; Ahmed, K. Designing efficient QCA even parity generator circuits with power dissipation analysis. Alex. Eng. J. 2018, 57, 2475–2484. [Google Scholar] [CrossRef]
- Lieberman, M.; Chellamma, S.; Varughese, B.; Wang, Y.; Lent, C.; Bernstein, G.H.; Snider, G.; Peiris, F.C. Quantum-Dot Cellular Automata at a Molecular Scale. Ann. N. Y. Acad. Sci. 2006, 960, 225–239. [Google Scholar] [CrossRef]
- Motoc Ilies, S.; Schinteie, B.; Pop, A.; Negrea, S.; Cretu, C.; Szerb, E.I.; Manea, F. Graphene Quantum Dots and Cu (I) Liquid Crystal for Advanced Electrochemical Detection of Doxorubicine in Aqueous Solutions. Nanomaterials 2021, 11, 2788. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.-H.; Hong, P.-Y.; Peng, K.-P.; Lin, H.-C.; George, T.; Li, P.-W. Germanium Quantum-Dot Array with Self-Aligned Electrodes for Quantum Electronic Devices. Nanomaterials 2021, 11, 2743. [Google Scholar] [CrossRef]
- Hennessy, K.; Lent, C.S. Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2001, 19, 1752–1755. [Google Scholar] [CrossRef] [Green Version]
- Cowburn, R.; Welland, M. Room temperature magnetic quantum cellular automata. Science 2000, 287, 1466–1468. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, C.; Lu, C.; Jiang, X.; Zhang, Z.; Wang, J.; Xiao, X.; Xin, M.; Wang, L. Investigation of transient magnetoelectric response of magnetostrictive/piezoelectric composite applicable for lightning current sensing. Sens. Actuators A Phys. 2021, 329, 112789. [Google Scholar] [CrossRef]
- Ahmed, S.; Naz, S.F.; Bhat, S.M. Design of quantum-dot cellular automata technology based cost-efficient polar encoder for nanocommunication systems. Int. J. Commun. Syst. 2020, 33, e4630. [Google Scholar]
- Ahmed, S.; Naz, S.F.; Sharma, S.; Ko, S.-B. Design of quantum-dot cellular automata-based communication system using modular N-bit binary to gray and gray to binary converters. Int. J. Commun. Syst. 2021, 34, e4702. [Google Scholar] [CrossRef]
- Gao, M.; Wang, J.; Fang, S.; Nan, J.; Daming, L. A New Nano Design for Implementation of a Digital Comparator Based on Quantum-Dot Cellular Automata. Int. J. Theor. Phys. 2021, 60, 2358–2367. [Google Scholar] [CrossRef]
- Bahar, A.N.; Billah, M.; Bhuiyan, M.M.R.; Al Shafi, A.; Ahmed, K.; Asaduzzaman, M. Ultra-efficient convolution encoder design in quantum-dot cellular automata with power dissipation analysis. Alex. Eng. J. 2018, 57, 3881–3888. [Google Scholar] [CrossRef]
- Bahar, A.N.; Waheed, S.; Hossain, N.; Asaduzzaman, M. A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis. Alex. Eng. J. 2018, 57, 729–738. [Google Scholar] [CrossRef]
- Ravindran, R. Design of reversible and non-reversible binary to gray and gray to binary converter using quantum Dot cellular automata. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 3822–3827. [Google Scholar]
- Xingjun, L.; Zhiwei, S.; Hongping, C.; Haghighi, M.R.J. A new design of QCA-based nanoscale multiplexer and its usage in communications. Int. J. Commun. Syst. 2019, 33, e4254. [Google Scholar] [CrossRef]
- Vahabi, M.; Lyakhov, P.; Bahar, A.N. Design and Implementation of Novel Efficient Full Adder/Subtractor Circuits Based on Quantum-Dot Cellular Automata Technology. Appl. Sci. 2021, 11, 8717. [Google Scholar] [CrossRef]
- Kaity, A.; Singh, S. Optimized area efficient quantum dot cellular automata based reversible code converter circuits: Design and energy performance estimation. J. Supercomput. 2021, 77, 11160–11186. [Google Scholar] [CrossRef]
- Heikalabad, S.R.; Ahmadi, R.; Salimzadeh, F. Introducing a Full-Adder Structure for Finite Field in QCA. ECS J. Solid State Sci. Technol. 2021, 10, 063006. [Google Scholar] [CrossRef]
- Azimi, S.; Angizi, S.; Moaiyeri, M.H. Efficient and Robust SRAM Cell Design Based on Quantum-Dot Cellular Automata. ECS J. Solid State Sci. Technol. 2018, 7, Q38–Q45. [Google Scholar] [CrossRef]
- Farazkish, R.; Khodaparast, F. Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess. Microsyst. 2015, 39, 426–433. [Google Scholar] [CrossRef]
- Khosroshahy, M.B.; Abdoli, A.; Panahi, M.M. Novel Feynman-Based Reversible and Fault-Tolerant Nano-communication Arithmetic Architecture Based on QCA Technology. SN Comput. Sci. 2021, 2, 1–14. [Google Scholar]
- Seyedi, S.; Otsuki, A.; Navimipour, N. A New Cost-Efficient Design of a Reversible Gate Based on a Nano-Scale Quantum-Dot Cellular Automata Technology. Electronics 2021, 10, 1806. [Google Scholar] [CrossRef]
- Sasamal, T.N.; Singh, A.K.; Ghanekar, U. Toward Efficient Design of Reversible Logic Gates in Quantum-Dot Cellular Automata with Power Dissipation Analysis. Int. J. Theor. Phys. 2018, 57, 1167–1185. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, D.K. QCA-Based RAM Design Using a Resilient Reversible Gate with Improved Performance. J. Circuits Syst. Comput. 2020, 29, 2050209. [Google Scholar] [CrossRef]
- Bahar, A.N.; Waheed, S.; Uddin, M.A.; Habib, M.A. Double Feynman gate (F2G) in quantum-dot cellular automata (QCA). Int. J. Comput. Sci. Eng. IJCSE 2013, 2, 351–355. [Google Scholar]
- Walus, K.; Dysart, T.; Jullien, G.; Budiman, R. QCADesigner: A Rapid Design and Simulation Tool for Quantum-Dot Cellular Automata. IEEE Trans. Nanotechnol. 2004, 3, 26–31. [Google Scholar] [CrossRef]
- Chabi, A.M.; Sayedsalehi, S.; Angizi, S.; Navi, K. Efficient QCA exclusive-or and multiplexer circuits based on a nanoelectronic-compatible designing approach. Int. Sch. Res. Not. 2014, 2014, 463967. [Google Scholar] [CrossRef] [PubMed]
- Kyosun, K.; Kaijie, W.; Karri, R. Quantum-dot cellular automata design guideline. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2006, 89, 1607–1614. [Google Scholar]
- Walus, K. ATIPS Laboratory QCADesigner Homepage; ATIPS Laboratory, University of Calgary: Calgary, AB, Canada, 2002. [Google Scholar]
- Riyaz, S.; Sharma, V.K. Design of reversible Feynman and double Feynman gates in quantum-dot cellular automata nanotechnology. Circuit World 2021. [Google Scholar] [CrossRef]
Designs | Area (μm2) | Cells | Delay | Quantum Cost (Area × Delay2) | |
---|---|---|---|---|---|
3 × 3 reversible circuit | Proposed layout in this study | 21 | 0.25 | 0.0025 | |
Seyedi, Otsuki [21] | 46 | 0.5 | 0.0125 | ||
Singh and Sharma [23] | 53 | 0.75 | 0. 028125 | ||
Sasamal, Singh [22] | 40 | 0.5 | 0.0125 | ||
Bahar, Waheed [24] (1) | 51 | 0.5 | 0.015 | ||
Bahar, Waheed [24] (2) | 96 | 0.75 | 0.050625 | ||
Riyaz and Sharma [29] | 27 | 0.25 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seyedi, S.; Jafari Navimipour, N.; Otsuki, A. A New Nano-Scale and Energy-Optimized Reversible Digital Circuit Based on Quantum Technology. Electronics 2022, 11, 4038. https://doi.org/10.3390/electronics11234038
Seyedi S, Jafari Navimipour N, Otsuki A. A New Nano-Scale and Energy-Optimized Reversible Digital Circuit Based on Quantum Technology. Electronics. 2022; 11(23):4038. https://doi.org/10.3390/electronics11234038
Chicago/Turabian StyleSeyedi, Saeid, Nima Jafari Navimipour, and Akira Otsuki. 2022. "A New Nano-Scale and Energy-Optimized Reversible Digital Circuit Based on Quantum Technology" Electronics 11, no. 23: 4038. https://doi.org/10.3390/electronics11234038
APA StyleSeyedi, S., Jafari Navimipour, N., & Otsuki, A. (2022). A New Nano-Scale and Energy-Optimized Reversible Digital Circuit Based on Quantum Technology. Electronics, 11(23), 4038. https://doi.org/10.3390/electronics11234038