Dynamic Voltage and Frequency Scaling and Duty-Cycling for Ultra Low-Power Wireless Sensor Nodes
Abstract
:1. Introduction
1.1. Motivation
1.2. Contributions
- 1.
- Investigation of energy optimization techniques in WSNs;
- 2.
- Reducing the overall power consumption of a wireless sensor node through the selection of a low-power MCU and the implementation of a power management-based DVFS technique;
- 3.
- Implementing the duty-cycling technique to reduce the energy consumed by the transceiver;
- 4.
- Measuring the consumed power during Bluetooth communication;
- 5.
- Defining the normalized power as an evaluation metric to measure the energy saving of the implemented solution with high accuracy.
1.3. Paper Organization
2. Related Works
2.1. Energy-Efficient Data Communication
2.2. Energy-Efficient Hardware Optimization
2.3. Energy-Efficient Energy Management
Energy Saving Level | Energy Saving Technique | Reference | Paper Contribution |
---|---|---|---|
Data communication | Cognitive radio | [33] | A mode switching strategy to harvest energy based on their current energy level and CH selection algorithm based on current energy levels and the average of past energy levels of sensor nodes |
Antenna direction | [34] | A reconfigurable cyclic antenna receiver based on a cyclic initiated and MAC receiver with switched antennas and integrated energy efficient scanning process | |
Routing | [21] | Low-latency, energy-balanced data transmission over a WSN small world, a data routing method by optimizing energy cost of the links | |
[17] | Fuzzy-based energy aware unequal clustering protocol | ||
[23] | Multi-hop data routing over a LPWAN using Q-Learning method | ||
Modulation and power transmission | [20] | Minimum-shift keying (MSK) modulation with Convolutional based on Bit Error Rate (BER), power consumption, wide bandwidth, easy demodulation and with a constant envelope | |
Duty cycling | [6] | Improved duty cycling algorithm with 2 residual energy thresholds: for the network and for the residual energy threshold for the path | |
[14] | BoostMAC protocol by adjusting the channel poling time and using machine learning classifier to configure the preamble length | ||
Hardware optimization | Low-power devices | [28] | Benchmarking based on real measurements to select the energy-efficient MCU |
Multi-core architectures | [27] | Executing a set of arithmetic operations on a set of sample MCUs | |
Co-processor | [35] | GPU-based parallel computing of energy and discrete event simulation in a multi-agent environment | |
Energy management | Zero-current standby | [29] | Vibrations to overcome overload for sensor activation and data transmission via Wi-Fi |
Workload management | [36] | A communication model that distributes the workload as an integer (0–1) linear programming problem for master and slave nodes based on energy for symmetric and asymmetric cluster- based networks | |
Scheduling | [37] | A content-based adaptive and dynamic scheduling | |
DPM | [38] | Centric reinforcement learning-based DPM model | |
DVFS | [39] | Combination of DVFS and EDF to ensure an energy consumption gain considering time constraints |
2.4. Discussion
3. Dynamic Voltage and Frequency Scaling, and Duty-Cycling
3.1. DVFS Algorithm Overview
3.2. DVFS Implementation
Techniques | References | Year | Paper Contributions |
---|---|---|---|
DVFS+workload | [39] | 2017 |
|
EA-DVFS | [50] | 2008 |
|
GPU+DVFS | [42] | 2013 |
|
DVFS HESS | [51] | 2020 |
|
DVFS+DPM | [52] | 2013 |
|
Workload management | [40] | 2013 |
|
DPM+GEDF | [53] | 2022 |
|
Multi-cores+run time management | [44] | 2019 |
|
Multicore+task mapping | [54] | 2018 |
|
Run time+energy harvesting | [55] | 2020 |
|
Our solution | 2022 |
|
4. Experimental Performance Evaluation
4.1. Impacts of DVFS Implementation on Active Operation
4.2. Impact of the Duty Cycle on the Power Gain
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, P.K.; Sharma, A. An intelligent WSN-UAV-based IoT framework for precision agriculture application. Comput. Electr. Eng. 2022, 100, 107912. [Google Scholar] [CrossRef]
- Chéour, R.; Khriji, S.; El Houssaini, D.; Baklouti, M.; Abid, M.; Kanoun, O. Recent Trends of FPGA Used for Low-Power Wireless Sensor Network. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 28–38. [Google Scholar] [CrossRef]
- Khriji, S.; Benbelgacem, Y.; Chéour, R.; Houssaini, D.E.; Kanoun, O. Design and implementation of a cloud-based event-driven architecture for real-time data processing in wireless sensor networks. J. Supercomput. 2022, 78, 3374–3401. [Google Scholar] [CrossRef]
- Rauber, T.; Rünger, G.; Stachowski, M. Performance and energy metrics for multi-threaded applications on DVFS processors. Sustain. Comput. Inform. Syst. 2017, 17, 55–68. [Google Scholar] [CrossRef]
- Senn, E.; Derouineau, N.; Tizon, N.; Boukhobza, J. Joint DVFS and Parallelism for Energy Efficient and Low Latency Software Video Decoding. IEEE Trans. Parallel Distrib. Syst. 2018, 29, 858–872. [Google Scholar]
- Dhall, R.; Agrawal, H. An improved energy efficient duty cycling algorithm for IoT based precision agriculture. Procedia Comput. Sci. 2018, 141, 135–142. [Google Scholar] [CrossRef]
- Abbas, A.; Ali, M.; Fayyaz, A.; Ghosh, A.; Kalra, A.; Khan, S.U.; Khan, M.U.S.; De Menezes, T.; Pattanayak, S.; Sanyal, A.; et al. A survey on energy-efficient methodologies and architectures of network-on-chip. Comput. Electr. Eng. 2014, 40, 333–347. [Google Scholar] [CrossRef]
- Khriji, S.; El Houssaini, D.; Kammoun, I.; Kanoun, O. A Fuzzy Based Energy Aware Unequal Clustering for Wireless Sensor Networks. In Proceedings of the International Conference on Ad-Hoc Networks and Wireless, Saint-Malo, France, 5–7 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 126–131. [Google Scholar]
- Salem, J.B.; Khriji, S.; Baklouti, M.; Kammoun, I.; Kanoun, O. Testbed Implementation of a Fuzzy based Energy Efficient Clustering Algorithm for Wireless Sensor Networks. In Proceedings of the 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD), Istanbul, Turkey, 21–24 March 2019; pp. 351–356. [Google Scholar]
- El Houssaini, D.; Khriji, S.; Besbes, K.; Kanoun, O. Wireless sensor networks in agricultural applications: Technology Components and System Design. In Energy Harvesting for Wireless Sensor Networks; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2018; pp. 323–341. [Google Scholar]
- Brockmann, C.; Günther-Sorge, J.; Pötter, H. Realisierung und Anwendung energieautarker miniaturisierter Funksensorik: Chancen durch IoT, 5G und Narrowband. TM-Tech. Mess. 2019, 86, 630–639. [Google Scholar] [CrossRef]
- Radha, S.; Bala, G.J.; Kanaga, E.; Nagabushanam, P. Scheduling and adaptive listening approaches in MAC for WSN applications: A survey. J. High Speed Netw. 2020, 26, 325–338. [Google Scholar] [CrossRef]
- Carrano, R.C.; Passos, D.; Magalhaes, L.C.; Albuquerque, C.V. Survey and taxonomy of duty cycling mechanisms in wireless sensor networks. IEEE Commun. Surv. Tutor. 2013, 16, 181–194. [Google Scholar] [CrossRef]
- Stone, K.; Colagrosso, M. Efficient duty cycling through prediction and sampling in wireless sensor networks. Wirel. Commun. Mob. Comput. 2007, 7, 1087–1102. [Google Scholar] [CrossRef]
- George, R.; Mary, T.A.J. Review on directional antenna for wireless sensor network applications. IET Commun. 2019, 14, 715–722. [Google Scholar] [CrossRef]
- Sheikh, S.A.; Gupta, S.H. Implementation and Analysis of Energy Efficiency of M-ary Modulation Schemes for Wireless Sensor Network. In Data and Communication Networks; Springer: Berlin/Heidelberg, Germany, 2019; pp. 57–68. [Google Scholar]
- Khriji, S.; Houssaini, D.; Kammoun, I.; Kanoun, O. Energy-efficient techniques in wireless sensor networks: Technology, components and system design. In Energy Harvesting for Wireless Sensor Networks; De Gruyter: Berlin, Germany, 2018; pp. 287–301. [Google Scholar]
- Chéour, R.; Jmal, M.W.; Kanoun, O.; Abid, M. Evaluation of simulator tools and power-aware scheduling model for wireless sensor networks. IET Comput. Digit. Tech. 2017, 11, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Kanoun, O.; Khriji, S.; Naifar, S.; Bradai, S.; Bouattour, G.; Bouhamed, A.; El Houssaini, D.; Viehweger, C. Prospects of Wireless Energy-Aware Sensors for Smart Factories in the Industry 4.0 Era. Electronics 2021, 10, 2929. [Google Scholar] [CrossRef]
- Anane, R.; Raoof, K.; Bouallegue, R. Minimization of wireless sensor network energy consumption through optimal modulation scheme and channel coding strategy. J. Signal Process. Syst. 2016, 83, 65–81. [Google Scholar] [CrossRef]
- Pandey, O.J.; Hegde, R.M. Low-latency and energy-balanced data transmission over cognitive small world WSN. IEEE Trans. Veh. Technol. 2018, 67, 7719–7733. [Google Scholar] [CrossRef]
- Jan, B.; Farman, H.; Javed, H.; Montrucchio, B.; Khan, M.; Ali, S. Energy efficient hierarchical clustering approaches in wireless sensor networks: A survey. Wirel. Commun. Mob. Comput. 2017, 2017, 6457942. [Google Scholar] [CrossRef] [Green Version]
- Pandey, O.J.; Yuvaraj, T.; Paul, J.K.; Nguyen, H.H.; Gundepudi, K.; Shukla, M.K. Improving Energy Efficiency and QoS of LPWANs for IoT Using Q-Learning Based Data Routing. IEEE Trans. Cogn. Commun. Netw. 2021, 8, 365–379. [Google Scholar] [CrossRef]
- Chilamkurthy, N.S.; Pandey, O.J.; Ghosh, A.; Cenkeramaddi, L.R.; Dai, H.N. Low-Power Wide-Area Networks: A Broad Overview of its Different Aspects. IEEE Access 2022, 10, 81926–81959. [Google Scholar] [CrossRef]
- Ouadou, M.; Zytoune, O.; El Hillali, Y.; Menhaj-Rivenq, A.; Aboutajdine, D. Energy efficient hardware and improved cluster-tree topology for lifetime prolongation in zigbee sensor networks. J. Sens. Actuator Netw. 2017, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Chéour, R.; Khriji, S.; Kanoun, O. Microcontrollers for IoT: Optimizations, Computing Paradigms, and Future Directions. In Proceedings of the 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 2–16 June 2020; pp. 1–7. [Google Scholar]
- Al-Kofahi, M.M.; Al-Shorman, M.Y.; Al-Kofahi, O.M. Toward energy efficient microcontrollers and Internet-of-Things systems. Comput. Electr. Eng. 2019, 79, 106457. [Google Scholar] [CrossRef]
- Gotz, M.; Khriji, S.; Chéour, R.; Arief, W.; Kanoun, O. Benchmarking based Investigation on Energy Efficiency of Low-Power Microcontrollers. IEEE Trans. Instrum. Meas. 2020, 69, 7505–7512. [Google Scholar] [CrossRef]
- Trigona, C.; Andò, B.; Baglio, S.; La Rosa, R.; Zoppi, G. Vibration-based Transducer for Zero-Energy standby applications. In Proceedings of the 2016 IEEE Sensors Applications Symposium (SAS), Catania, Italy, 20–22 April 2016; pp. 1–4. [Google Scholar]
- Chéour, R.; Jmal, M.W.; Abid, M. New combined method for low energy consumption in Wireless Sensor Network applications. Simulation 2018, 94, 873–885. [Google Scholar] [CrossRef]
- Mokarippor, P.; Shirvani, M.H. A State Of The Art Survey On DVFS Techniques In Cloud Computing Environment. J. Multidiscip. Eng. Sci. Technol. JMEST 2016, 3, 50. [Google Scholar]
- Mei, X.; Wang, Q.; Chu, X. A survey and measurement study of GPU DVFS on energy conservation. Digit. Commun. Netw. 2017, 3, 89–100. [Google Scholar] [CrossRef]
- Aslam, S.; Ejaz, W.; Ibnkahla, M. Energy and spectral efficient cognitive radio sensor networks for Internet of Things. IEEE Internet Things J. 2018, 5, 3220–3233. [Google Scholar] [CrossRef]
- Le, T.N.; Pegatoquet, A.; Le Huy, T.; Lizzi, L.; Ferrero, F. Improving energy efficiency of mobile WSN using reconfigurable directional antennas. IEEE Commun. Lett. 2016, 20, 1243–1246. [Google Scholar] [CrossRef]
- Lounis, M.; Bounceur, A.; Laga, A.; Pottier, B. GPU-based parallel computing of energy consumption in wireless sensor networks. In Proceedings of the 2015 European Conference on Networks and Communications (EuCNC), Paris, France, 29 June–2 July 2015; pp. 290–295. [Google Scholar]
- Huang, Y.; Yu, W.; Garcia-Ortiz, A. Accurate energy-aware workload distribution for wireless sensor networks using a detailed communication energy cost model. J. Low Power Electron. 2014, 10, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.N.; Rahman, H.U.; Almaiah, M.A.; Khan, M.Z.; Khan, A.; Raza, M.; Al-Zahrani, M.; Almomani, O.; Khan, R. Improving energy efficiency with content-based adaptive and dynamic scheduling in wireless sensor networks. IEEE Access 2020, 8, 176495–176520. [Google Scholar] [CrossRef]
- Hosahalli, D.; Srinivas, K.G. Enhanced reinforcement learning assisted dynamic power management model for internet-of-things centric wireless sensor network. IET Commun. 2020, 14, 3748–3760. [Google Scholar] [CrossRef]
- Reddy, B.K.; Singh, A.K.; Biswas, D.; Merrett, G.V.; Al-Hashimi, B.M. Inter-cluster Thread-to-core Mapping and DVFS on Heterogeneous Multi-cores. IEEE Trans.-Multi-Scale Comput. Syst. 2017, 4, 369–382. [Google Scholar] [CrossRef]
- Park, S.; Park, J.; Shin, D.; Wang, Y.; Xie, Q.; Pedram, M.; Chang, N. Accurate modeling of the delay and energy overhead of dynamic voltage and frequency scaling in modern microprocessors. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2013, 32, 695–708. [Google Scholar] [CrossRef]
- Ng, L.L.; Yeap, K.H.; Goh, M.W.C.; Dakulagi, V. Power Consumption in CMOS Circuits. In Field-Effect Transistor; InTech Open: Rijeka, Croatia, 2022. [Google Scholar]
- Leng, J.; Hetherington, T.; ElTantawy, A.; Gilani, S.; Kim, N.S.; Aamodt, T.M.; Reddi, V.J. GPUWattch: Enabling energy optimizations in GPGPUs. ACM SIGARCH Comput. Archit. News 2013, 41, 487–498. [Google Scholar] [CrossRef]
- Wang, S.; Qian, Z.; Yuan, J.; You, I. A DVFS based energy-efficient tasks scheduling in a data center. IEEE Access 2017, 5, 13090–13102. [Google Scholar] [CrossRef]
- Basireddy, K.R.; Singh, A.K.; Al-Hashimi, B.M.; Merrett, G.V. AdaMD: Adaptive mapping and DVFS for energy-efficient heterogeneous multicores. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2019, 39, 2206–2217. [Google Scholar] [CrossRef] [Green Version]
- Slimani, C.; Rubini, S.; Boukhobza, J. Hymad: A hybrid memory-aware DVFS strategy. ACM SIGBED Rev. 2019, 16, 45–50. [Google Scholar] [CrossRef]
- Yao, Y.; Lu, Z. DVFS for NoCs in CMPs: A thread voting approach. In Proceedings of the 2016 IEEE International Symposium on High Performance Computer Architecture (HPCA), Barcelona, Spain, 12–16 March 2016; pp. 309–320. [Google Scholar]
- Cotes-Ruiz, I.T.; Prado, R.P.; García-Galán, S.; Muñoz-Expósito, J.E.; Ruiz-Reyes, N. Dynamic voltage frequency scaling simulator for real workflows energy-aware management in green cloud computing. PLoS ONE 2017, 12, e0169803. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.D.; Park, G.; Kim, H.; Alian, M.; Kim, N.S.; Kim, D. NMAP: Power Management Based on Network Packet Processing Mode Transition for Latency-Critical Workloads. In Proceedings of the MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, Virtual, 18–22 October 2021; pp. 143–154. [Google Scholar]
- Tan, Z.; Yang, X.; Pang, M.; Gao, S.; Li, M.; Chen, P. UAV-Assisted Low-Consumption Time Synchronization Utilizing Cross-Technology Communication. Sensors 2020, 20, 5134. [Google Scholar] [CrossRef]
- Liu, S.; Qiu, Q.; Wu, Q. Energy aware dynamic voltage and frequency selection for real-time systems with energy harvesting. In Proceedings of the 2008 Design, Automation and Test in Europe, Munich, Germany, 10–14 March 2008; pp. 236–241. [Google Scholar]
- Kim, H.Y.; Lee, S.W. Lifespan Extension of an IoT System with a Fixed Lithium Battery. IEICE Trans. Inf. Syst. 2020, 103, 2559–2567. [Google Scholar] [CrossRef]
- Hoang, V.T.; Julien, N.; Berruet, P. Increasing the autonomy of Wireless Sensor Node by effective use of both DPM and DVFS methods. In Proceedings of the 2013 IEEE Faible Tension Faible Consommation, Paris, France, 20–21 June 2013; pp. 1–4. [Google Scholar]
- Chéour, R.; Jmal, M.W.; Khriji, S.; El Houssaini, D.; Trigona, C.; Abid, M.; Kanoun, O. Towards Hybrid Energy-Efficient Power Management in Wireless Sensor Networks. Sensors 2022, 22, 301. [Google Scholar] [CrossRef]
- Mo, L.; Kritikakou, A.; Sentieys, O. Energy-quality-time optimized task mapping on DVFS-enabled multicores. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 2428–2439. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Ul Ain, Q.; Siddiqui, J.H.; Mottola, L.; Alizai, M.H. Intermittent Computing with Dynamic Voltage and Frequency Scaling. In Proceedings of the 2020 International Conference on Embedded Wireless Systems and Networks, Lyon, France, 17–19 February 2020; pp. 97–107. [Google Scholar]
- Texaz Instruments. Power Management Module and Supply Voltage Supervisor, SLAU388F; Texas Intruments: Dallas, TX, USA, 2018. [Google Scholar]
- Lo Giudice, P.; Nocera, A.; Ursino, D.; Virgili, L. Building topic-driven virtual iots in a multiple iots scenario. Sensors 2019, 19, 2956. [Google Scholar] [CrossRef] [PubMed]
- Cauteruccio, F.; Cinelli, L.; Terracina, G.; Ursino, D.; Virgili, L. Investigating the Scope of a Thing in a Multiple Internet of Things Scenario. In Proceedings of the SEBD, Castiglione della Pescaia, Italy, 16–19 June 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khriji, S.; Chéour, R.; Kanoun, O. Dynamic Voltage and Frequency Scaling and Duty-Cycling for Ultra Low-Power Wireless Sensor Nodes. Electronics 2022, 11, 4071. https://doi.org/10.3390/electronics11244071
Khriji S, Chéour R, Kanoun O. Dynamic Voltage and Frequency Scaling and Duty-Cycling for Ultra Low-Power Wireless Sensor Nodes. Electronics. 2022; 11(24):4071. https://doi.org/10.3390/electronics11244071
Chicago/Turabian StyleKhriji, Sabrine, Rym Chéour, and Olfa Kanoun. 2022. "Dynamic Voltage and Frequency Scaling and Duty-Cycling for Ultra Low-Power Wireless Sensor Nodes" Electronics 11, no. 24: 4071. https://doi.org/10.3390/electronics11244071
APA StyleKhriji, S., Chéour, R., & Kanoun, O. (2022). Dynamic Voltage and Frequency Scaling and Duty-Cycling for Ultra Low-Power Wireless Sensor Nodes. Electronics, 11(24), 4071. https://doi.org/10.3390/electronics11244071