Compact High-Directivity Contra-Directional Coupler
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Directional Coupler
2.2. Implementation of Directional Coupler
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Derivation of Equations (14)–(17)
References
- Podell, A. A High Directivity Microstrip Coupler Technique. In Proceedings of the G-MTT 1970 International Microwave Symposium, Newport Beach, CA, USA, 11–14 May 1970; pp. 33–36. [Google Scholar] [CrossRef]
- Uysal, S.; Aghvami, H. Synthesis, design, and construction of ultra-wide-band nonuniform quadrature directional couplers in inhomogeneous media. IEEE Trans. Microw. Theory Tech. 1989, 37, 969–976. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Jacob, A.F. Advanced characterization and design of compensated high directivity quadrature coupler. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23–28 May 2010; pp. 724–727. [Google Scholar] [CrossRef]
- Sheleg, B.; Spielman, B. Broad-Band Directional Couplers Using Microstrip with Dielectric Overlays. IEEE Trans. Microw. Theory Tech. 1974, 22, 1216–1220. [Google Scholar] [CrossRef]
- Haupt, G.; Delfs, H. High-directivity microstrip directional couplers. Electron. Lett. 1974, 10, 142–143. [Google Scholar] [CrossRef]
- Su, L.; Itoh, T.; Rivera, J. Design of an overlay directional coupler by a full-wave analysis. IEEE Trans. Microw. Theory Tech. 1983, 31, 427–429. [Google Scholar]
- Muller, J.; Pham, M.N.; Jacob, A.F. Directional Coupler Compensation with Optimally Positioned Capacitances. IEEE Trans. Microw. Theory Tech. 2011, 59, 2824–2832. [Google Scholar] [CrossRef]
- Keshavarz, R.; Movahhedi, M. A Compact and Wideband Coupled-Line Coupler with High Coupling Level Using Shunt Periodic Stubs. Radio Eng. 2013, 22, 5. [Google Scholar]
- Zhang, Z.; Rautschke, F.; Nguyen, H.; Barbin, S.E.; Boeck, G. A novel structure of high directivity broadband microstrip coupler. In Proceedings of the 2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Porto de Galinhas, Brazil, 3–6 November 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Nghe, C.T.; Rautschke, F.; Boeck, G. Performance optimization of capacitively compensated directional couplers. In Proceedings of the 2017 47th European Microwave Conference (EuMC), Nuremberg, Germany, 10–12 October 2017; pp. 408–411. [Google Scholar] [CrossRef]
- Lee, S.; Lee, Y. An Inductor-Loaded Microstrip Directional Coupler for Directivity Enhancement. IEEE Microw. Wirel. Compon. Lett. 2009, 19, 362–364. [Google Scholar] [CrossRef]
- Park, J.-H.; Lee, Y. Asymmetric coupled line directional coupler loaded with shunt inductors for directivity enhancement. Electron. Lett. 2010, 46, 425. [Google Scholar] [CrossRef]
- Lee, S.; Lee, Y. A Design Method for Microstrip Directional Couplers Loaded with Shunt Inductors for Directivity Enhancement. IEEE Trans. Microw. Theory Tech. 2010, 58, 994–1002. [Google Scholar] [CrossRef]
- Dydyk, M. Microstrip directional couplers with ideal performance via single-element compensation. IEEE Trans. Microw. Theory Tech. 1999, 47, 956–964. [Google Scholar] [CrossRef]
- Chen, J.-L.; Chang, S.-F.; Wu, C.-T. A High-Directivity Microstip Directional Coupler with Feedback Compensation. In Proceedings of the 2002 IEEE MTT-S International Microwave Symposium Digest, Washington, DC, USA, 2–7 June 2002; p. 4. [Google Scholar]
- Chen, D.-Z.; Shi, X.-W.; Yang, Y.-Y.; Wei, F. Compact microstrip parallel coupler with high isolation. Electron. Lett. 2008, 44, 740. [Google Scholar] [CrossRef]
- Levy, R. General Synthesis of Asymmetric Multi-Element Coupled-Transmission-Line Directional Couplers. IEEE Trans. Microw. Theory Tech. 1963, 11, 226–237. [Google Scholar] [CrossRef]
- Gruszczynski, S.; Wincza, K. Broadband multisection asymmetric 8.34-dB directional coupler with improved directivity. In Proceedings of the 2007 Asia-Pacific Microwave Conference, Bangkok, Thailand, 11–14 December 2007; pp. 1–4. [Google Scholar] [CrossRef]
- Phromloungsri, R.; Chongcheawchamnan, M.; Robertson, I. Inductively Compensated Parallel Coupled Microstrip Lines and Their Applications. IEEE Trans. Microw. Theory Tech. 2006, 54, 3571–3582. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Mirtaheri, S.A.; Khosravani-Moghaddam, M.A.; Habibi, B.; Meiguni, J.S. Design, fabrication and test of a broadband high directivity directional coupler. In Proceedings of the 2015 23rd Iranian Conference on Electrical Engineering, Tehran, Iran, 10–14 May 2015; pp. 168–170. [Google Scholar] [CrossRef]
- Hrobak, M.; Sterns, M.; Seler, E.; Schramm, M.; Schmidt, L.-P. Design and construction of an ultrawideband backward wave directional coupler. IET Microw. Antennas Propag. 2012, 6, 1048. [Google Scholar] [CrossRef]
- Park, M.-J.; Lee, B. Compact foldable coupled-line cascade couplers. IEE Proc.-Microw. Antennas Propag. 2006, 153, 237. [Google Scholar] [CrossRef]
- Park, M.-J.; Lee, B. Coupled-line 180° hybrid coupler. Microw. Opt. Technol. Lett. 2005, 45, 173–176. [Google Scholar] [CrossRef]
- Sanna, G.; Montisci, G.; Jin, Z.; Fanti, A.; Casula, G.A. Design of a Low-Cost Microstrip Directional Coupler with High Coupling for a Motion Detection Sensor. Electronics 2018, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Chun, Y.-H.; Moon, J.-Y.; Yun, S.-W.; Rhee, J.-K. Microstrip line directional couplers with high directivity. Electron. Lett. 2004, 40, 317. [Google Scholar] [CrossRef]
- Dydyk, M. Accurate design of microstrip directional couplers with capacitive compensation. In Proceedings of the IEEE International Digest on Microwave Symposium, Dallas, TX, USA, 8–10 May 1990; pp. 581–584. [Google Scholar] [CrossRef]
- March, S. Phase Velocity Compensation in Parallel-Coupled Microstrip. In Proceedings of the MTT-S International Microwave Symposium Digest, Dallas, TX, USA, 14-19 June 1982; Volume 82, pp. 410–412. [Google Scholar] [CrossRef]
- Shie, C.-I.; Cheng, J.-C.; Chou, S.-C.; Chiang, Y.-C. Transdirectional Coupled-Line Couplers Implemented by Periodical Shunt Capacitors. IEEE Trans. Microw. Theory Tech. 2009, 57, 2981–2988. [Google Scholar] [CrossRef]
- Kim, C.-S.; Lim, J.-S.; Kim, D.-J.; Ahn, D. A design of single and multi-section microstrip directional coupler with the high directivity. In Proceedings of the 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535), Fort Worth, TX, USA, 6–11 June 2004; pp. 1895–1898. [Google Scholar] [CrossRef]
- Chang, S.-F.; Chen, J.-L.; Jeng, Y.-H.; Wu, C.-T. New high-directivity coupler design with coupled spurlines. IEEE Microw. Wirel. Compon. Lett. 2004, 14, 65–67. [Google Scholar] [CrossRef] [Green Version]
- Muller, J.; Jacob, A.F. Complex compensation of coupled line structures in inhomogeneous media. In Proceedings of the 2008 IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, 15–20 June 2008; pp. 1007–1010. [Google Scholar] [CrossRef]
- Phromloungsri, R.; Chamnanphrai, V.; Chongcheawchamnan, M. Design high-directivity parallel-coupled lines using quadrupled inductive-compensated technique. In Proceedings of the 2006 Asia-Pacific Microwave Conference, Yokohama, Japan, 12–15 December 2006; pp. 1380–1383. [Google Scholar] [CrossRef]
- Vogel, R. Analysis and design of lumped- and lumped-distributed-element directional couplers for MIC and MMIC applications. IEEE Trans. Microw. Theory Tech. 1992, 40, 253–262. [Google Scholar] [CrossRef]
- Jahn, S.; Margraf, M.; Habchi, V.; Jacob, R. QUCS Technical Papers. 2007, pp. 1–264. Available online: https://qucs.sourceforge.net/docs/technical/technical.pdf (accessed on 8 November 2022).
|
|
|
|
|
|
|
|
|
Dimension Designation | Dimension (mm) | Position |
---|---|---|
2.0 | Coupled-line length | |
1.1 | Coupled-line width | |
0.5 | Main-line stub length | |
0.7 | Coupled-line stub length | |
0.425 | Inner stub length | |
1.0 | Stub width | |
1.1 | Coupled-line space | |
0.25 | The gap between inner stubs | |
1.15 | 50 Ohm line width |
Works | Freq. (20 dB dir.) (GHz) | Size (mm) | Cpl. (dB) | Dir. (min.) (dB) | Dir. (peak) (dB) | High-Power Structure | |
---|---|---|---|---|---|---|---|
[9] | 1.2~2.8 * | 18.9 × 5.4 | 0.80 | 30 | 20 | 28 | No (thin interdigital stub) |
[11] | 0.8~1.03 | 53.4 × 23.2 | 3.78 | 10 | 20 | 52 | No (thin short stub) |
[13] | 2.22~2.65 | 18 × 17 | 2.50 | 20 | 20 | 56 | No (thin short stub) |
[20] | 2~18 * | 52 × 8 | 13.87 | 20 | 15 | 25 | Yes |
[21] | 2~50 | 8.5 × 1.5 | 1.74 | 16 | 9 | 31 | No (sharp shape, thin gap) |
[24] | 10~11 ** | 13 × 6 | 2.73 | 6.5 | 28 | 30 | Yes |
[25] | 1.7~1.91 | 60 × 34.5 | 12.56 | 20 | 20 | 30 | Yes |
[29] | 0.8~2.8 * | 30 × 6.5 | 1.17 | 20 | 20 | 40 | No (thin stub) |
[30] | 2.05~2.6 | 25 × 16 | 3.10 | 10 | 20 | 37 | Yes |
[31] | 1.0~2.1 | 19 × 7.5 | 0.74 | 10 | 20 | 50 | No (inductor at port) |
[32] | 0.31~1.18 | 42 × 20 | 2.09 | 10 | 20 | 43 | No (inductor at port) |
[30] | 2.05~2.6 | 25 × 16 | 3.10 | 10 | 20 | 37 | Yes |
This work | 12.8~14.8 | 5.5 × 4 | 1.01 | 20 | 20 | 45 | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, W.I.; Chung, M.J.; Park, C.S. Compact High-Directivity Contra-Directional Coupler. Electronics 2022, 11, 4115. https://doi.org/10.3390/electronics11244115
Chang WI, Chung MJ, Park CS. Compact High-Directivity Contra-Directional Coupler. Electronics. 2022; 11(24):4115. https://doi.org/10.3390/electronics11244115
Chicago/Turabian StyleChang, Won Il, Mahn Jea Chung, and Chul Soon Park. 2022. "Compact High-Directivity Contra-Directional Coupler" Electronics 11, no. 24: 4115. https://doi.org/10.3390/electronics11244115
APA StyleChang, W. I., Chung, M. J., & Park, C. S. (2022). Compact High-Directivity Contra-Directional Coupler. Electronics, 11(24), 4115. https://doi.org/10.3390/electronics11244115