An Innovative Infrastructure Based on Shape-Adaptive RIS for Smart Industrial IoTs
Abstract
:1. Introduction
2. What Is RIS?
2.1. Structure and Artificial Units of RIS
2.2. Communication Capabilities of RIS
- 1.
- Signal Enhancement
- 2.
- Coverage Enhancement
- 3.
- Signal Neutralization
- 4.
- SWIPT
- 5.
- Physical-Layer Security Communication
3. An Innovative Infrastructure Based on Shape-Adaptive RIS for Smart Industrial IoTs
4. Shape-Adaptive RIS
4.1. Shape Design of Deformable RIS
4.2. Channel Gain
5. Simulation Results and Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coutinho, R.; Boukerche, A. Modeling and Analysis of a Shared Edge Caching System for Connected Cars and Industrial IoT-Based Applications. IEEE Trans. Ind. Inform. 2020, 16, 2003–2012. [Google Scholar] [CrossRef]
- Horejsi, P.; Novikov, K.; Simon, M. A Smart Factory in a Smart City: Virtual and Augmented Reality in a Smart Assembly Line. IEEE Access 2020. [Google Scholar] [CrossRef]
- Elangovan, E. Industry 5.0: The Future of the Industrial Economy, 1st ed.; CRC Press: Boca Raton, FL, USA, 2022; ISBN 978-1-00-319067-7. [Google Scholar]
- Sardar, S.K.; Sarkar, B.; Kim, B. Integrating Machine Learning, Radio Frequency Identification, and Consignment Policy for Reducing Unreliability in Smart Supply Chain Management. Processes 2021, 9, 247. [Google Scholar] [CrossRef]
- Ullah, M.; Sarkar, B. Recovery-Channel Selection in a Hybrid Manufacturing-Remanufacturing Production Model with RFID and Product Quality. Int. J. Prod. Econ. 2020, 219, 360–374. [Google Scholar] [CrossRef]
- Chatzimisios, P.; Soldani, D.; Jamalipour, A.; Manzalini, A.; Das, S.K. Special Issue on 6G Wireless Systems. J. Commun. Netw. 2020, 22, 440–443. [Google Scholar] [CrossRef]
- Tariq, F.; Khandaker, M.; Wong, K.K.; Imran, M.A.; Debbah, M. A Speculative Study on 6G. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Cui, T.-J.; Wu, H.-T.; Liu, S. Research progress of information metamaterials. Acta Phys. Sin. 2020, 69, 158101–158113. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network. IEEE Commun. Mag. 2020, 58, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Chen, M.Z.; Chen, X.; Dai, J.Y.; Cui, T.J. Wireless Communications with Reconfigurable Intelligent Surface: Path Loss Modeling and Experimental Measurement. IEEE Trans. Wirel. Commun. 2020, 20, 421–439. [Google Scholar] [CrossRef]
- Dai, J.Y.; Tang, W.; Yang, L.X.; Li, X.; Chen, M.Z.; Ke, J.C.; Cheng, Q.; Jin, S.; Cui, T.J. Realization of Multi-Modulation Schemes for Wireless Communication by Time-Domain Digital Coding Metasurface. IEEE Trans. Antennas Propag. 2020, 68, 1618–1627. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Wang, M.; Yang, X.; Tan, J.; Bi, S.; Xu, S.; Yang, F.; Chen, Z.; Renzo, M.D.; et al. Reconfigurable Intelligent Surface-Based Wireless Communications: Antenna Design, Prototyping, and Experimental Results. IEEE Access 2020, 8, 45913–45923. [Google Scholar] [CrossRef]
- Pérez-Adán, D.; Fresnedo, Ó.; González-Coma, J.P.; Castedo, L. Intelligent Reflective Surfaces for Wireless Networks: An Overview of Applications, Approached Issues, and Open Problems. Electronics 2021, 10, 2345. [Google Scholar] [CrossRef]
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.-S.; Zhang, R. Wireless Communications Through Reconfigurable Intelligent Surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Björnson, E.; Özdogan, Ö.; Larsson, E.G. Intelligent Reflecting Surface Versus Decode-and-Forward: How Large Surfaces Are Needed to Beat Relaying? IEEE Wirel. Commun. Lett. 2020, 9, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Perović, N.S.; Tran, L.-N.; Di Renzo, M.; Flanagan, M.F. Achievable Rate Optimization for MIMO Systems with Reconfigurable Intelligent Surfaces. IEEE Trans. Wirel. Commun. 2021, 20, 3865–3882. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Pan, C.; Ren, H.; Wang, K.; Nallanathan, A. Robust Transmission Design for Intelligent Reflecting Surface Aided Secure Communication Systems with Imperfect Cascaded CSI. IEEE Trans. Wirel. Commun. 2021, 20, 2487–2501. [Google Scholar] [CrossRef]
- Praia, J.; Pavia, J.P.; Souto, N.; Ribeiro, M. Phase Shift Optimization Algorithm for Achievable Rate Maximization in Reconfigurable Intelligent Surface-Assisted THz Communications. Electronics 2022, 11, 18. [Google Scholar] [CrossRef]
- Alghamdi, R.; Alhadrami, R.; Alhothali, D.; Almorad, H.; Faisal, A.; Helal, S.; Shalabi, R.; Asfour, R.; Hammad, N.; Shams, A.; et al. Intelligent Surfaces for 6G Wireless Networks: A Survey of Optimization and Performance Analysis Techniques. IEEE Access 2020, 8, 202795–202818. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L.; Wymeersch, H.; Hoydis, J.; Marzetta, T.L. Massive MIMO Is a Reality—What Is next?: Five Promising Research Directions for Antenna Arrays. Digit. Signal Process. 2019, 94, 3–20. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, X.; Han, C.; Wen, Q. Towards Intelligent Reflecting Surface Empowered 6G Terahertz Communications: A Survey. China Commun. 2021, 18, 93–119. [Google Scholar] [CrossRef]
- Guo, X.; Chen, Y.; Wang, Y. Learning-Based Robust and Secure Transmission for Reconfigurable Intelligent Surface Aided Millimeter Wave UAV Communications. IEEE Wirel. Commun. Lett. 2021, 10, 1795–1799. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, L.; Huang, K.; You, L. On the Trade-Off between Energy Efficiency and Spectral Efficiency in RIS-Aided Multi-User MISO Downlink. Electronics 2021, 10, 1307. [Google Scholar] [CrossRef]
- Esfahani, A.; Mantas, G.; Matischek, R.; Saghezchi, F.B.; Rodriguez, J.; Bicaku, A.; Bastos, J. Lightweight Authentication Mechanism for M2M Communications in Industrial IoT Environment. IEEE Internet Things J. 2019, 6, 288–296. [Google Scholar] [CrossRef]
- Haochi, Z.; Peihang, H.; Lingyun, N.; Lepeng, Z.; Tiejun, C. Spoof Plasmonic Metamaterials. Acta Opt. Sin. 2021, 41, 0124001. [Google Scholar] [CrossRef]
- Lin, B.A.I.; Xin’ge, Z.; Weixiang, J.; Tiejun, C.U.I. Research Progress of Light-controlled Electromagnetic Metamaterials. LDXB 2021, 10, 240–258. [Google Scholar] [CrossRef]
- Pan, C.; Ren, H.; Wang, K.; Kolb, J.F.; Elkashlan, M.; Chen, M.; Hanzo, L. Reconfigurable Intelligent Surfaces for 6G Systems: Principles, Applications, and Research Directions. IEEE Commun. Mag. 2021, 59, 14–20. [Google Scholar] [CrossRef]
- Cui, T.J.; Mei, Q.Q.; Wan, X.; Jie, Z.; Qiang, C. Coding Metamaterials, Digital Metamaterials and Programming Metamaterials. Light Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef]
- Huanhuan, Y.; Xiangyu, C.; Jun, G.; Tong, L.I.; Sijia, L.I.; Lili, C.; Xia, Z. Recent Advances in Reconfigurable Metasurfaces and Their Applications. LDXB 2021, 10, 206–219. [Google Scholar] [CrossRef]
- Gao, L.H.; Cheng, Q.; Yang, J.; Ma, S.J.; Zhao, J.; Liu, S.; Chen, H.B.; He, Q.; Jiang, W.X.; Ma, H.F. Broadband Diffusion of Terahertz Waves by Multi-Bit Coding Metasurfaces. Light Sci. Appl. 2015, 4, e324. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Zhao, J.; Hong, T.; Tang, T. Radar-Communication Integration for 6G Massive IoT Services. IEEE Internet Things J. 2021. [Google Scholar] [CrossRef]
- Bjrnson, E.; Sanguinetti, L. Power Scaling Laws and Near-Field Behaviors of Massive MIMO and Intelligent Reflecting Surfaces. IEEE Open J. Commun. Soc. 2020, 1, 1306–1324. [Google Scholar] [CrossRef]
- Singh, S.K.; Jeong, Y.S.; Park, J.H. A Deep Learning-Based IoT-Oriented Infrastructure for Secure Smart City. Sustain. Cities Soc. 2020, 60, 102252. [Google Scholar] [CrossRef]
- Sepasgozar, S. Differentiating Digital Twin from Digital Shadow: Elucidating a Paradigm Shift to Expedite a Smart, Sustainable Built Environment. Buildings 2021, 11, 151. [Google Scholar] [CrossRef]
Classification | References | Features | Technology Trends |
---|---|---|---|
Design of RIS hardware structures | [8,9,10,11,12,13] | Reflective type, emission type, penetrable type, pin diode, MEMS, FPGA, amplitude, phase, frequency, polarization, OAM, metasurface with planar array. | Independently controllable units, adjustable in large bandwidth, optimization of spatial arrangement, versatile RIS array. |
Theoretical study of baseband algorithms | [14,15,16,17,18,19] | Passive, active, cascaded channel, phase-shift matrix, channel modeling, channel estimation, channel state information (CSI), signal enhancement, signal neutralization, SWIPT, communication perception and localization. | Different transmission scenarios, distributed RIS collaborative-transport solutions, AI-based algorithms, system-level simulation platforms. |
Design of RIS-based wireless network architecture | [20,21,22,23,24] | Single RIS; multi-RIS collaboration; based on spectrum sharing; based on non-spectrum sharing; 3D beamforming; combination with different networks, such as MIMO, OFDM. | Topology of multi-cell RIS networks, mobility, security, deployment, applications. Industrial IoT is expected to be a major application scenario for RIS in the future, and RIS will aid in the realization of various new applications in the industrial IoTs, such as digital twins (DTs). |
this study | Industrial IoTs, IoTs applications, shape-adaptive RIS, infrastructure, coverage probability, channel gain. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Fu, X.; Peng, R.; Kadoch, M. An Innovative Infrastructure Based on Shape-Adaptive RIS for Smart Industrial IoTs. Electronics 2022, 11, 391. https://doi.org/10.3390/electronics11030391
Wang J, Fu X, Peng R, Kadoch M. An Innovative Infrastructure Based on Shape-Adaptive RIS for Smart Industrial IoTs. Electronics. 2022; 11(3):391. https://doi.org/10.3390/electronics11030391
Chicago/Turabian StyleWang, Jiazheng, Xiuhua Fu, Rongqun Peng, and Michel Kadoch. 2022. "An Innovative Infrastructure Based on Shape-Adaptive RIS for Smart Industrial IoTs" Electronics 11, no. 3: 391. https://doi.org/10.3390/electronics11030391
APA StyleWang, J., Fu, X., Peng, R., & Kadoch, M. (2022). An Innovative Infrastructure Based on Shape-Adaptive RIS for Smart Industrial IoTs. Electronics, 11(3), 391. https://doi.org/10.3390/electronics11030391