A Multi-Slot Two-Antenna MIMO with High Isolation for Sub-6 GHz 5G/IEEE802.11ac/ax/C-Band/X-Band Wireless and Satellite Applications
Abstract
:1. Introduction
2. Design Layout of Single Monopole Antenna Element
3. Antenna Evolution Mechanism
3.1. Step-1: Design of Rectangular Radiator
3.2. Step-2: Deployment of MSS on Right and Left Side of ANT#1
3.3. Step-3: The Loading of L-Shaped Slots and Inverted U-Shaped Slot
4. Geometry, Design and Analysis of the Proposed Two-Antenna MIMO
4.1. Analysis of the Two-Antenna MIMO without Decoupling Structure
4.2. Analysis of the Proposed Two-Antenna MIMO with Decoupling Structure
5. Results and Discussion of the Proposed Two-Antenna MIMO
5.1. Simulated and Measured Reflection Coefficient and Isolation
5.2. Simulated and Measured Far Field Radiation Patterns
5.3. Simulated and Measured Realised Gain and Radiation Efficiency
6. Diversity Performance Analysis
6.1. Envelope Correlation Coefficient (ECC)
6.2. Diversity Gain (DG) dB
6.3. Mean Effective Gain (MEG)
6.4. Total Active Reflection Coefficient (TARC)
6.5. Channel Capacity Loss (CCL)
6.6. Channel Capacity (bits/s/Hz)
7. Performance Comparison of the Proposed Two-Antenna MIMO with Existing State of Arts
- It has the smallest physical dimensions (volume size) as compared to all the antennas mentioned in Table 1.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hassan, M.M.; Zahid, Z.; Khan, A.A.; Rashid, I.; Rauf, A.; Maqsood, M.; Bhatti, F.A. Two element MIMO antenna with frequency reconfigurable characteristics utilizing RF MEMS for 5G applications. J. Electromagn. Waves Appl. 2020, 34, 1210–1224. [Google Scholar] [CrossRef]
- Chouhan, S.; Panda, D.K.; Kushwah, V.S.; Singhal, S. Spider-shaped fractal MIMO antenna for WLAN/WiMAX/Wi-Fi/Bluetooth/C-band applications. AEU Int. J. Electron. Commun. 2019, 110, 1–8. [Google Scholar] [CrossRef]
- Soltani, S.; Lotfi, P.; Murch, R.D. A Dual-Band Multiport MIMO Slot Antenna for WLAN Applications. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 529–532. [Google Scholar] [CrossRef]
- Babu, K.V.; Anuradha, B. Design and performance analysis of tri-band Wang shaped MIMO antenna. Int. J. Inf. Technol. 2020, 12, 559–566. [Google Scholar] [CrossRef]
- El Ouahabi, M.; Zakriti, A.; Essaaidi, M.; Dkiouak, A.; Hanae, E. A miniaturized dual-band MIMO antenna with low mutual coupling for wireless applications. Prog. Electromagn. Res. C 2019, 93, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, J.; Sim, C.Y.D.; Deshpande, V. Low-profile, compact, two port MIMO antenna conforming Wi-Fi-5/Wi-Fi-6/V2X/DSRC/INSAT-C for wireless industrial applications. In Proceedings of the IEEE 17th India Council International Conference (INDICON), New Delhi, India, 10–13 December 2020; pp. 1–5. [Google Scholar]
- Dkiouak, A.; Zakriti, A.; El Ouahabi, M. Design of a compact dual-band MIMO antenna with high isolation for WLAN and X-band satellite by using orthogonal polarization. J. Electromagn. Waves Appl. 2019, 34, 1254–1267. [Google Scholar] [CrossRef]
- Kumar, M.; Nath, V. Design and development of triple-band compact ACS-fed MIMO antenna for 2.4/3.5/5 GHz WLAN/WiMAX applications. Analog. Integr. Circ. Sig. Process 2020, 103, 461–470. [Google Scholar] [CrossRef]
- Ekrami, H.; Jam, S. A compact triple-band dual-element MIMO antenna with high port-to-port isolation for wireless ap-plications. Int. J. Electron. Commun. 2018, 96, 219–227. [Google Scholar] [CrossRef]
- Islam, S.N.; Das, S. Dual-band CPW fed MIMO antenna with polarization diversity and improved gain. Int. J. RF Microw. Comput. Eng. 2020, 30, e22128. [Google Scholar] [CrossRef]
- Tiwari, R.N.; Singh, P.; Kanaujia, B.K.; Kumar, S.; Gupta, S.K. A low-profile dual band MIMO antenna for LTE/ Blue-tooth/Wi-Fi/WLAN applications. J. Electromagn. Waves Appl. 2020, 34, 1239–1253. [Google Scholar] [CrossRef]
- Kulkarni, J.; Desai, A.; Sim, C. Two port CPW-fed MIMO antenna with wide bandwidth and high isolation for future wireless applications. Int. J. RF Microw. Comput. Eng. 2021, 31, e22700. [Google Scholar] [CrossRef]
- Saurabh, A.K.; Meshram, M.K. Compact sub-6 GHz 5G-multipleinput- multiple-output antenna system with enhanced isolation. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22246. [Google Scholar] [CrossRef]
- Khan, A.A.; Jamaluddin, M.H.; Aqeel, S.; Nasir, J.; Kazim, J.U.R.; Owais, O. Dual-band MIMO dielectric resonator antenna for WiMAX/WLAN applications. IET Microwaves, Antennas Propag. 2017, 11, 113–120. [Google Scholar] [CrossRef]
- Kumari, T.; Das, G.; Sharma, A.; Gangwar, R.K. Design approach for dual element hybrid MIMO antenna arrangement for wideband applications. Int. J. RF Microw. Comput. Eng. 2018, 29, e21486. [Google Scholar] [CrossRef]
- Kumar, M.; Nath, V. Analysis of low mutual coupling compact multi-band microstrip patch antenna and its array using defected ground structure. Eng. Sci. Technol. Int. J. 2016, 19, 866–874. [Google Scholar] [CrossRef] [Green Version]
- Pandhare, R.A.; Zade, P.L.; Abegaonkar, M.P. Miniaturized microstrip antenna array using defected ground structure with enhanced performance. Eng. Sci. Technol. Int. J. 2016, 19, 1360–1367. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.; Pandey, G.P. Two port compact MIMO antenna for ISM band applications. Prog. Electromagn. Res. C 2020, 100, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.K.; Chakraborty, U. Reduced mutual coupling of compact MIMO antenna designed for WLAN and WiMAX applications. Int. J. RF Microw. Comput. Eng. 2018, 29, e21629. [Google Scholar] [CrossRef]
- Roy, S.; Chakraborty, U. Mutual Coupling Reduction in a Multi-band MIMO Antenna Using Meta-Inspired Decoupling Network. Wirel. Pers. Commun. 2020, 114, 3231–3246. [Google Scholar] [CrossRef]
- Wang, C.; Yang, X.; Wang, B. A metamaterial-based compact broadband planar monopole MIMO antenna with high isolation. Microw. Opt. Technol. Lett. 2020, 62, 2965–2970. [Google Scholar] [CrossRef]
- Kulkarni, J.; Desai, A.; Sim, C.Y.D. Wideband four-port MIMO antenna array with high isolation for future wireless sys-tems. AEU-Int. J. Electron. Commun. 2021, 128, 1–4. [Google Scholar] [CrossRef]
- Pirasteh, A.; Roshani, S.; Roshani, S. Compact microstrip lowpass filter with ultrasharp response using a square-loaded modified T-shaped resonator. Turk. J. Electr. Eng. Comput. Sci. 2018, 26, 1736–1746. [Google Scholar] [CrossRef]
Step | Sub-6 GHz 5G NR | IEEE 802.11ac | IEEE 802.11ax | C-Band | X-Band | Impedance Matching |
---|---|---|---|---|---|---|
ANT#1 | - | Yes | Yes | - | - | Good |
ANT#2 | - | Yes | - | Yes | - | Good |
ANT#3 | Yes | Yes | Yes | Yes | Yes | Good |
Functioning Band | Simulated Peak Gain (dBi) | Measured Peak Gain (dBi) | ||
---|---|---|---|---|
Sub-6 GHz 5G NR & C-band uplink | 3.00 | 2.77 | 72.99 | 70.10 |
IEEE 802.11ac | 3.08 | 2.72 | 73.50 | 70.50 |
IEEE 802.11ax & C-band downlink | 3.75 | 3.35 | 76.50 | 72.49 |
X-band | 3.48 | 2.91 | 78.48 | 70.80 |
Frequency (GHz) | MEG (-dB) of Antenna Elements | |||
---|---|---|---|---|
Antenna Element#1 | Antenna Element#2 | Ratio of Antenna Element#1/Antenna Element#2 | Ratio of Antenna Element#2/Antenna Element#1 | |
Sub-6 GHz 5G and C-band uplink | −3.10 | −3.11 | 0.99 | 1.00 |
IEEE 802.11ac | −3.21 | −3.22 | 0.99 | 1.00 |
IEEE 802.11ax 5G and C-band downlink | −3.15 | −3.14 | 1.00 | 0.99 |
X-band | −3.05 | −3.04 | 1.00 | 0.99 |
Ref | Dimension (mm3) | Sub | BW (GHz) | Gain (dBi) | ECC | DG | Isol (dB) | Decoupling Structure |
---|---|---|---|---|---|---|---|---|
[1] | 32 × 98 × 1 | FR-4 | 0.6–0.7 1.7–1.9 2.4–2.7 3.2–4.1 5.1–5.9 | 5.14 | 0.04 | 9.8 | >15 | Not used |
[2] | 56 × 37 × 1.6 | FR-4 | 2.24–2.50 3.60–3.99 4.40–4.60 5.71–5.90 | 2 | 0.08 | 9.5 | >15 | Not used |
[4] | 70 × 52 × 1.6 | FR-4 | 3.10–3.21 6.20–6.33 7.60–7.90 | 5.84 | 0.025 | 9.5 | >31 | Not used |
[9] | 90 × 21 × 1.6 | FR-4 | 2.22–2.54 3.14–3.90 5.30–5.90 | 3.22 | 0.01 | 10 | >20 | Not used |
[10] | 34 × 34 × 1.44 | FR-4 | 3.50–3.60 5.00–5.40 | 4.7 | 0.01 | - | >19 | U-shape slot in ground plane |
[13] | 20 × 35 × 0.8 | FR-4 epoxy | 3.34–3.87 | 2.5 | 0.01 | - | >20 | T-shape ground stub |
[15] | 59 × 55 × 8.1 | FR-4 | 3.00–7.00 | 4 | 0.2 | 8.94 | >20 | DGS |
[18] | 38.2 × 95.94 × 1.6 | FR-4 | 2.43–2.50 | 4.25 | 0.008 | 9.99 | >24 | Fractal EBG |
[19] | 55 × 28 × 1.6 | FR-4 | 2.01–3.92 | 2 | 0.01 | 9.8 | >15 | EBG |
[20] | 100 × 60 × 1 | Jeans | 1.34–3.92 4.34–6.34 | 5 | 0.04 | 9.0 | >18 | Meta-Inspired |
[21] | 47.5 × 40 × 1.6 | FR-4 | 3.35–3.78 | 3.5 | 0.05 | - | >15 | Metamaterial |
This Work | 32 × 20 × 0.8 | FR-4 | 3.3–7.8 8.0–12.0 | 4.0 | 0.05 | 9.9 | >20 | Concentric Rings |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, A.G.; Kulkarni, J.; Desai, A.; Sim, C.-Y.-D.; Poddar, A. A Multi-Slot Two-Antenna MIMO with High Isolation for Sub-6 GHz 5G/IEEE802.11ac/ax/C-Band/X-Band Wireless and Satellite Applications. Electronics 2022, 11, 473. https://doi.org/10.3390/electronics11030473
Alharbi AG, Kulkarni J, Desai A, Sim C-Y-D, Poddar A. A Multi-Slot Two-Antenna MIMO with High Isolation for Sub-6 GHz 5G/IEEE802.11ac/ax/C-Band/X-Band Wireless and Satellite Applications. Electronics. 2022; 11(3):473. https://doi.org/10.3390/electronics11030473
Chicago/Turabian StyleAlharbi, Abdullah G., Jayshri Kulkarni, Arpan Desai, Chow-Yen-Desmond Sim, and Ajay Poddar. 2022. "A Multi-Slot Two-Antenna MIMO with High Isolation for Sub-6 GHz 5G/IEEE802.11ac/ax/C-Band/X-Band Wireless and Satellite Applications" Electronics 11, no. 3: 473. https://doi.org/10.3390/electronics11030473
APA StyleAlharbi, A. G., Kulkarni, J., Desai, A., Sim, C. -Y. -D., & Poddar, A. (2022). A Multi-Slot Two-Antenna MIMO with High Isolation for Sub-6 GHz 5G/IEEE802.11ac/ax/C-Band/X-Band Wireless and Satellite Applications. Electronics, 11(3), 473. https://doi.org/10.3390/electronics11030473