IoT Monitoring and Prediction Modeling of Honeybee Activity with Alarm
Abstract
:1. Introduction
- a system for bee movement monitoring was constructed and installed on the basis of which we could correlate independent and dependent indicators;
- a large set of sensors for monitoring conditions from within and outside the hive was installed, which collects a wide array of real-time parameters;
- a microcontroller-based IoT device was designed and constructed, which aggregates sensor readings and uploads data to the cloud;
- an AI-based computational module was created and deployed to the cloud backend, which enables real-time analytical and predictive assessment of data uploaded from the IoT device;
- a web frontend app was designed and created, which enables insight into real-time data from sensors at the hive and results from the AI module, namely, analytical and predictive warnings and alarms.
2. Related Work
3. System Overview
Main Unit Architecture
4. WebAPP for MAP
5. Dataset Description
6. Methodology
6.1. ARIMA
- AR: Autoregression. A model that uses the dependent relationship between an observation and some number of lagged observations.
- I: Integrated. The use of the differencing of raw observations (i.e., subtracting an observation from an observation at the previous time step) in order to make the time series stationary.
- MA: Moving average. A model that uses the dependency between an observation and a residual error from a moving average model applied to lagged observations.
6.2. Facebook Prophet
6.3. LSTM Model
7. Experimental Setup and Evaluation
- ARIMA: In our experiments, different values for the p, d, and q parameters were tested, and the ARIMA model with the smallest RMSE error was selected for further testing. For p, parameter values of 0, 1, 2, 4, 6, 8, and 10 were tested, while d and q values were tested for values ranging from 0 to 3. A combination of parameters (p, d, q) that showed the best performance of the ARIMA model for BEE_OUT and BEE_IN outputs was (p, d, q) = (10, 0, 2); for BEE_IN, the combination of (0, 0, 2) was selected.
- Facebook Prophet: Different combinations of input variables from Table 1 were tested, but the best results were obtained by using the following variables: AM2302_1_Temp, AM2302_1_Humi, AM2302_2_Temp HIVE, AM2302_2_Humi HIVE, MHRD_rain, MQ135_PPM, BH1750_lux, VEML6750_uvindex, and Day_night.
- Recurrent neural networks: The first step is to prepare the BEE dataset for the LSTM. This involves framing the dataset as a supervised-learning problem and normalizing the input variables. The same variables used by the Facebook Prophet algorithm were also used here. The supervised-learning problem is framed as predicting the bee exit or entrance at the current hour (t) given the bee exit or entrance measurement, and weather conditions at the prior time step. After this transformation step, the ten input variables (input series) and one output variable (bee exit or entrance at the current hour) are
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ngo, T.-N.; Rustia, D.; Yang, E.-C.; Lin, T.-T. Honey Bee Colony Population Daily Loss Rate Forecasting and an Early Warning Method Using Temporal Convolutional Networks. Sensors 2021, 21, 3900. [Google Scholar] [CrossRef]
- Hristov, P.; Shumkova, R.; Palova, N.; Neov, B. Factors Associated with Honey Bee Colony Losses: A Mini-Review. Vet. Sci. 2020, 7, 166. [Google Scholar] [CrossRef]
- Watson, K.; Stallins, J.A. Honey Bees and Colony Collapse Disorder: A Pluralistic Reframing. Geogr. Compass 2016, 10, 222–236. [Google Scholar] [CrossRef]
- Braga, A.R.; Gomes, D.G.; Rogers, R.; Hassler, E.E.; Freitas, B.M.; Cazier, J.A. A method for mining combined data from in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies. Comput. Electron. Agric. 2020, 169, 105161. [Google Scholar] [CrossRef]
- Zabasta, A.; Zhiravetska, A.; Kunicina, N.; Kondratjevs, K. Technical Implementation of IoT Concept for Bee Colony Monitoring. In Proceedings of the 2019 8th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 10–14 June 2019. [Google Scholar] [CrossRef]
- Muhammad, Z.; Saxena, N.; Qureshi, I.M.; Ahn, C.W. Hybrid Artificial Bee Colony Algorithm for an Energy Efficient Internet of Things based on Wireless Sensor Network. IETE Tech. Rev. 2017, 34, 39–51. [Google Scholar] [CrossRef]
- Edwards-Murphy, F.; Magno, M.; Whelan, P.M.; O’Halloran, J.; Popovici, E.M. b+WSN: Smart beehive with preliminary decision tree analysis for agriculture and honey bee health monitoring. Comput. Electron. Agric. 2016, 124, 211–219. [Google Scholar] [CrossRef]
- Clarke, D.; Robert, D. Predictive modelling of honey bee foraging activity using local weather conditions. Apidologie 2018, 49, 386–396. [Google Scholar] [CrossRef] [Green Version]
- Fiedler, S.; Zacepins, A.; Kviesis, A.; Komasilovs, V.; Wakjira, K.; Nawawi, M.; Hensel, O.; Purnomo, D. Implementation of the Precision Beekeeping System for Bee Colony Monitoring in Indonesia and Ethiopia. In Proceedings of the 2020 21th International Carpathian Control Conference (ICCC), High Tatras, Slovakia, 27–29 October 2020. [Google Scholar]
- Komasilovs, V.; Zacepins, A.; Kviesis, A.; Fiedler, S.; Kirchner, S. Modular sensory hardware and data processing solution for implementation of the precision beekeeping. Agron. Res. 2019, 17, 509–517. [Google Scholar] [CrossRef]
- Catania, P.; Vallone, M. Design of an innovative system for precision beekeeping. In Proceedings of the 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Portici, Italy, 24–26 October 2019; pp. 323–327. [Google Scholar]
- Zacepins, A.; Brusbardis, V.; Meitalovs, J.; and Stalidzans, E. Challenges in the development of precision beekeep-ing. Biosyst. Eng. 2015, 130, 60–71. [Google Scholar] [CrossRef]
- Catania, P.; Vallone, M. Application of A Precision Apiculture System to Monitor Honey Daily Production. Sensors 2020, 20, 2012. [Google Scholar] [CrossRef] [Green Version]
- Henry, E.; Adamchuk, V.; Stanhope, T.; Buddle, C.; Rindlaub, N. Precision apiculture: Development of a wireless sensor network for honeybee hives. Comput. Electron. Agric. 2018, 156, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Kviesis, A.; Komasilovs, V.; Komasilova, O.; Zacepins, A. Application of fuzzy logic for honey bee colony state detection based on temperature data. Biosyst. Eng. 2020, 193, 90–100. [Google Scholar] [CrossRef]
- Abou-Shaara, H.F.; Owayss, A.A.; Ibrahim, Y.Y.; Basuny, N.K. A review of impacts of temperature and relative humidity on various activities of honey bees. Insectes Sociaux 2017, 64, 455–463. [Google Scholar] [CrossRef]
- Meikle, W.G.; Weiss, M.; Maes, P.W.; Fitz, W.; Snyder, L.A.; Sheehan, T.; Mott, B.M.; Anderson, K.E. Internal hive temperature as a means of monitoring honey bee colony health in a migratory beekeeping operation before and during winter. Apidologie 2017, 48, 666–680. [Google Scholar] [CrossRef] [Green Version]
- Zacepins, A. Application of bee hive temperature measurements for recognition of bee colony state. In Proceedings of the 5th International Scientific Conference on Applied Information and Communication Technologies, Jelgava, Latvia, 26–27 April 2012; pp. 216–221. [Google Scholar]
- Rybin, V.G.; Rodionova, E.A.; Karimov, A.I.; Kopets, E.E.; Chernetskiy, E.S. Remote Data Acquisition System for Apiary Monitoring. In Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), St. Petersburg, Russia, 26–29 January 2021; pp. 1059–1062. [Google Scholar]
- Du, N.H.; Dong, N.D.; Luu, V.T.; Van Hoang, N.; Thai, P.H.; Ngoc, P.T.; Long, N.V.; Hong, P.T.T. Toward Audio Beehive Monitoring Based on IoT-AI techniques: A Survey and Perspective. Vietnam J. Agric. Sci. 2020, 3, 530–540. [Google Scholar] [CrossRef]
- Craig, L.M.; Parry, R.M.; Tashakkori, R.; Watts, I. BeePhon: A Web-Application for Beehive Audio Exploration. In Proceedings of the 2019 SoutheastCon, Huntsville, AL, USA, 11–14 April 2019. [Google Scholar] [CrossRef]
- Cecchi, S.; Terenzi, A.; Orcioni, S.; Riolo, P.; Ruschioni, S.; Isidoro, N. A Preliminary Study of Sounds Emitted by Honey Bees in a Beehive. In Audio Engineering Society Convention 144; Audio Engineering Society: Milan, Italy, 2018. [Google Scholar]
- Murphy, F.E.; Srbinovski, B.; Magno, M.; Popovici, E.M.; Whelan, P.M. An automatic, wireless audio recording node for analysis of beehives. In Proceedings of the 2015 26th Irish Signals and Systems Conference (ISSC), Carlow, Ireland, 24–25 June 2015; pp. 1–6. [Google Scholar]
- Kulyukin, V.; Mukherjee, S.; Amlathe, P. Toward Audio Beehive Monitoring: Deep Learning vs. Standard Machine Learning in Classifying Beehive Audio Samples. Appl. Sci. 2018, 8, 1573. [Google Scholar] [CrossRef] [Green Version]
- Anand, N.; Raj, V.B.; Ullas, M.S.; Srivastava, A. Swarm Detection and Beehive Monitoring System using Auditory and Microclimatic Analysis. In Proceedings of the 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C), Bangalore, India, 3–5 October 2018; pp. 1–4. [Google Scholar]
- Robles-Guerrero, A.; Saucedo-Anaya, T.; González-Ramérez, E.; Galván-Tejada, C.E. Frequency Analysis of Honey Bee Buzz for Automatic Recognition of Health Status: A Preliminary Study. Res. Comput. Sci. 2017, 142, 89–98. [Google Scholar] [CrossRef]
- Szczurek, A.; Maciejewska, M.; Bąk, B.; Wilde, J.; Siuda, M. Semiconductor gas sensor as a detector of Varroa destructor infestation of honey bee colonies—Statistical evaluation. Comput. Electron. Agric. 2019, 162, 405–411. [Google Scholar] [CrossRef]
- Bromenshenk, J.J.; Henderson, C.B.; Seccomb, R.A.; Welch, P.M.; Debnam, S.E.; Firth, D.R. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome. Biosensors 2015, 5, 678–711. [Google Scholar] [CrossRef] [Green Version]
- Hennessy, G.; Harris, C.; Eaton, C.; Wright, P.; Jackson, E.; Goulson, D.; Ratnieks, F.F. Gone with the wind: Effects of wind on honey bee visit rate and foraging behaviour. Anim. Behav. 2020, 161, 23–31. [Google Scholar] [CrossRef]
- da Silva, D.; Rodrigues, Í.; Braga, A.; Nobre, J.; Freitas, B.; Gomes, D. An Autonomic, Adaptive and High-Precision Statistical Model to Determine Bee Colonies Well-Being Scenarios. In Anais do XI Workshop de Computação Aplicada à Gestão do Meio Ambiente e Recursos Naturais; SBC: Porto Alegre, Brazil, 2020. [Google Scholar] [CrossRef]
- Rybin, V.G.; Butusov, D.N.; Karimov, T.I.; Belkin, D.A.; Kozak, M.N. Embedded data acquisition system for beehive monitoring. In Proceedings of the 2017 IEEE II International Conference on Control in Technical Systems (CTS), Saint Petersburg, Russia, 25–27 October 2017; pp. 387–390. [Google Scholar]
- Cecchi, S.; Spinsante, S.; Terenzi, A.; Orcioni, S. A Smart Sensor-Based Measurement System for Advanced Bee Hive Monitoring. Sensors 2020, 20, 2726. [Google Scholar] [CrossRef] [PubMed]
- Murphy, F.E.; Magno, M.; Whelan, P.; Vici, E.P. b+WSN: Smart beehive for agriculture, environmental, and honey bee health monitoring—Preliminary results and analysis. In Proceedings of the 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia, 13–15 April 2015; pp. 1–6. [Google Scholar]
- Meikle, W.G.; Holst, N. Application of continuous monitoring of honeybee colonies. Apidologie 2014, 46, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Marchal, P.; Buatois, A.; Kraus, S.; Klein, S.; Gómez-Moracho, T.; Lihoreau, M. Automated monitoring of bee behaviour using connected hives: Towards a computational apidology. Apidologie 2020, 51, 356–368. [Google Scholar] [CrossRef]
- Ngo, T.N.; Wu, K.C.; Yang, E.-C.; Lin, T.T. A real-time imaging system for multiple honey bee tracking and activity moni-toring. Comput. Electron. Agric. 2019, 163, 104841. [Google Scholar] [CrossRef]
- Cousin, P.; Cauia, E.; Siceanu, A.; de Cledat, J. The Development of an Efficient System to Monitor the Honeybee Colonies Depopulations. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019. [Google Scholar]
- Kridi, D.S.; de Carvalho, C.G.N.; Gomes, D.G. Application of wireless sensor networks for beehive monitoring and in-hive thermal patterns detection. Comput. Electron. Agric. 2016, 127, 221–235. [Google Scholar] [CrossRef]
- Sachin, K.; Gagana, M.R.; Rubab, H.; Jalaja, G.S.; Jayanand, J. Monitoring of Honey Bee Hiving System using Sensor Networks. Int. J. Eng. Res. Technol. 2020, 9, 527–530. [Google Scholar] [CrossRef]
- Zacepins, A.; Kviesis, A.; Komasilovs, V.; Muhammad, F.R. Monitoring System for Remote Bee Colony State Detection. Balt. J. Mod. Comput. 2020, 8, 461–470. [Google Scholar] [CrossRef]
- Gil-Lebrero, S.; Quiles-Latorre, F.J.; Ortiz-López, M.; Sánchez-Ruiz, V.; Gámiz-López, V.; Luna-Rodríguez, J.J. Honey bee colonies remote monitoring system. Sensors 2017, 17, 55. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.-A.; Wang, C.-H.; Chen, C.-H.; Liao, M.-S.; Su, Y.-L.; Chen, W.-S.; Huang, C.-P.; Yang, E.-C. A WSN-based automatic monitoring system for the foraging behavior of honey bees and environmental factors of beehives. Comput. Electron. Agric. 2016, 123, 304–318. [Google Scholar] [CrossRef]
- Vidrascu, M.G.; Svasta, P.M.; Vladescu, M. High reliability wireless sensor node for bee hive monitoring. In Proceedings of the 2016 IEEE 22nd International Symposium for Design and Technology in Electronic Packaging (SIITME), Oradea, Romania, 20–23 October 2016; pp. 134–138. [Google Scholar]
- Chen, W.-S.; Wang, C.-H.; Jiang, J.-A.; Yang, E.-C. Develpment of a Monitoring System for Honeybee Activities. In Proceedings of the 2015 Minth International Conference on Sensing Technology, Auckland, New Zealand, 8–10 December 2015; pp. 745–750. [Google Scholar]
- Cecchi, S.; Terenzi, A.; Orcioni, S.; Spinsante, S.; Primiani, V.M.; Moglie, F.; Ruschioni, S.; Mattei, C.; Riolo, P.; Isidoro, N. Multi-sensor platform for real time measurements of honey bee hive parameters. IOP Conf. Series Earth Environ. Sci. 2019, 275, 012016. [Google Scholar] [CrossRef]
- Dogan, S.; Akbal, E.; Ozmen Koca, G.; Balta, A. Design of a remote Controlled Beehive for Improving Efficiency of Beekeeping Activities. In Proceedings of the 8th International Advanced Technologies Symposium (IATS’17), Elazig, Turkey, 19–22 October 2017; Firat Universites: Elazığ, Turkey, 2017; pp. 1084–1090. [Google Scholar]
- Balta, A.; Dogan, S.; Ozmen Koca, G.; Akbal, E. Software Modeling of Remote Controlled Beehive Design. In Proceedings of the International Conference on Advances and Innovations in Engineering (ICAIE), Elazig, Turkey, 10–12 May 2017; pp. 1133–1137. [Google Scholar]
- Giammarini, M.; Concettoni, E.; Zazzarini, C.C.; Orlandini, N.; Albanesi, M.; Cristalli, C. BeeHive Lab project-Sensorized hive for bee colonies life study. In Proceedings of the 2015 12th International Workshop on Intelligent Solutions in Embedded Systems (WISES), Ancona, Italy, 29–30 October 2015; pp. 121–125. [Google Scholar]
- Hong, W.; Xu, B.; Chi, X.; Cui, X.; Yan, Y.; Li, T. Long-Term and Extensive Monitoring for Bee Colonies Based on Internet of Things. IEEE Internet Things J. 2020, 7, 7148–7155. [Google Scholar] [CrossRef]
- Ochoa, I.Z.; Gutiérrez, S.; Rodriguez, F. Internet of Things: Low Cost Monitoring BeeHive System using Wireless Sensor Network. In Proceedings of the 2019 IEEE International Conference on Engineering Veracruz, ICEV 2019, Boca del Rio, Veracruz, 14–17 October 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Kontogiannis, S. An Internet of Things-Based Low-Power Integrated Beekeeping Safety and Conditions Monitoring System. Inventions 2019, 4, 52. [Google Scholar] [CrossRef] [Green Version]
- Pešović, U.; Marković, D.; Đurašević, S.; Ranđić, S. Remote monitoring of beehive activity. Acta Agric. Serbica 2019, 24, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Debauche, O.; El Moulat, M.; Mahmoudi, S.; Boukraa, S.; Manneback, P.; Lebeau, F. Web monitoring of bee health for re-searchers and beekeepers based on the internet of things. Procedia Comput. Sci. 2018, 130, 991–998. [Google Scholar] [CrossRef]
- Dineva, K. Computer system using internet of things for monitoring of bee hives. Int. Multidiscip. Sci. GeoConference SGEM 2017, 17, 27. [Google Scholar] [CrossRef]
- Lyu, X.; Zhang, S.; Wang, Q. Design of Intelligent Beehive System based on Internet of Things Technology. In Proceedings of the 3rd International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 2019), Chongqing, China, 30–31 May 2019. [Google Scholar]
- Zabasta, A.; Kunicina, N.; Kondratjevs, K.; Ribickis, L. IoT Approach Application for Development of Autonomous Beekeeping System. In Proceedings of the 2019 International Conference in Engineering Applications (ICEA), Sao Miguel, Portugal, 8–11 July 2019; pp. 1–6. [Google Scholar]
- Vidrascu, M.G.; Svasta, P.M. Embedded software for IOT bee hive monitoring node. In Proceedings of the 2017 IEEE 23rd International Symposium for Design and Technology in Electronic Packaging (SIITME), Constanța, Romania, 26–29 October 2017; pp. 183–188. [Google Scholar]
- Zacepins, A.; Kviesis, A.; Pecka, A.; Osadcuks, V. Development of Intrenet of Things concept for Precission bee-keeping. In Proceedings of the 2017 18th International Carpathian Control Conference (ICCC), Sinaia, Romania, 28–31 May 2017; pp. 28–31. [Google Scholar]
- Kviesis, A.; Zacepins, A. Application of neural networks for honey bee colony state identification. In Proceedings of the 2016 17th International Carpathian Control Conference (ICCC), High Tatras, Slovakia, 29 May–1 June 2016; pp. 413–417. [Google Scholar]
- Zgank, A. IoT-Based Bee Swarm Activity Acoustic Classification Using Deep Neural Networks. Sensors 2021, 21, 676. [Google Scholar] [CrossRef]
- Chen, C.; Yang, E.-C.; Jiang, J.-A.; Lin, T.-T. An imaging system for monitoring the in-and-out activity of honey bees. Comput. Electron. Agric. 2012, 89, 100–109. [Google Scholar] [CrossRef]
- Bermig, S.; Odemer, R.; Gombert, A.; Frommberger, M.; Rosenquist, R.; Pistorius, J. Experimental validation of an electronic counting device to determine flight activity of honey bees (Apis mellifera L.). J. Cultiv. Plants 2020, 72, 132–140. [Google Scholar] [CrossRef]
- Arnia: Remote Beehive Monitoring. Available online: https://www.arnia.co/ (accessed on 28 January 2022).
- Beecheck. Available online: https://beecheck.org/ (accessed on 28 January 2022).
- Bee Counter. Available online: https://www.beehivemonitoring.com/en/ (accessed on 28 January 2022).
- Honey Bee Counter. Available online: https://www.instructables.com/Honey-Bee-Counter/ (accessed on 28 January 2022).
- Fritzing Open-Source Software. Available online: https://fritzing.org (accessed on 28 January 2022).
- Supandi; Arkan, F.; Gusa, R.F.; Jumnahdi, M.; Kurniawan, R. Design of system for setting the temperature and monitoring bees in and out the hive. IOP Conf. Series: Earth Environ. Sci. 2020, 599, 012050. [Google Scholar] [CrossRef]
- Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent Neural Networks for Time Series Forecasting: Current status and future directions. Int. J. Forecast. 2021, 37, 388–427. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 9781118674925. [Google Scholar]
- Taylor, S.J.; Letham, B. Forecasting at scale. Am. Stat. 2018, 72, 37–45. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Dean, J. Google’s neural machine transla-tion system: Bridging the gap between human and machine translation. arXiv 2016, arXiv:1609.08144. [Google Scholar]
- Otter, D.W.; Medina, J.R.; Kalita, J.K. A Survey of the Usages of Deep Learning for Natural Language Processing. IEEE Trans. Neural Networks Learn. Syst. 2021, 32, 604–624. [Google Scholar] [CrossRef] [Green Version]
- Nassif, A.B.; Shahin, I.; Attili, I.; Azzeh, M.; Shaalan, K. Speech recognition using deep neural networks: A sys-tematic review. IEEE Access 2019, 7, 19143–19165. [Google Scholar] [CrossRef]
- Sharma, H.; Agrahari, M.; Singh, S.K.; Firoj, M.; Mishra, R.K. Image captioning: A comprehensive survey. In Proceedings of the 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), Mathura, India, 28–29 February 2020; pp. 325–328. [Google Scholar]
Column Name | Description | Column Name | Description |
---|---|---|---|
Date | Date of measuring | BME280_humi | Outside humidity control |
Hour | Time of measuring | BME280_pressure | Air pressure |
AM2302_1_Temp | Outside air temperature | BME280_alt | Altitude |
AM2302_1_Humi | Outside humidity | SI1145_visible | Daylight intensity |
AM2302_2_Temp HIVE | Temperature in a hive | SI1145_IR | Infrared intensity |
AM2302_2_Humi HIVE | Humidity in a hive | SI1145_UV | UV index control |
SW420_Vibrate HIVE | Vibrations in a hive | ANEM_voltage | Wind force |
MHRD_rain | Rain sensor | ANEM_windSpeed | Wind speed |
MQ135_PPM | Air quality sensor | MIC1_freq | Frequency spectrum |
MICS6814_PPM | Air quality sensor | MIC1_volume | Sound level and loudness |
MICS5524_PPM HIVE | Air quality sensor in a hive | MIC2_freq HIVE | Frequency spectrum in a HIVE |
BH1750_lux | Day light and lux intensity | MIC2_volume HIVE | Sound level and loudness in a HIVE |
VEML6750_uvindex | UV index | BEECNT_message OUT | Bee counter OUT HIVE |
BME280_temp | Ouside temperature control | BEECNT_message IN | Bee counter IN HIVE |
Date | Date of measuring | BME280_humi | Outside humidity control |
Hour | Time of measuring | BME280_pressure | Air pressure |
AM2302_1_Temp | Outside air temperature | BME280_alt | Altitude |
AM2302_1_Humi | Outside humidity | SI1145_visible | Daylight intensity |
AM2302_2_Temp HIVE | Temperature in a hive | SI1145_IR | Infrared intensity |
BEE_OUT | BEE_IN | ||
---|---|---|---|
Results of Dickey–Fuller Test: | Results of Dickey–Fuller Test: | ||
Test Statistic | −8.410 | Test Statistic | −9.169 |
p-value | 2.112 × 10−13 | p-value | 2.406 × 10−15 |
#Lags Used | 14 | #Lags Used | 3 |
Number of Observations Used | 465 | Number of Observations Used | 476 |
Critical Value (1%) | −3.444 | Critical Value (1%) | −3.444 |
Critical Value (5%) | −2.867 | Critical Value (5%) | −2.867 |
Critical Value (10%) | −2.570 | Critical Value (10%) | −2.570 |
MODEL | CV Test RMSE OUT | CV Test RMSE IN |
---|---|---|
ARIMA | 894.92 | 511.77 |
Facebook Prophet | 589.97 | 475.25 |
LSTM | 426.49 | 378.464 |
Algorithm Parameters | BEE OUT/IN |
---|---|
ARIMA | For BEE OUT (p, d, q): (10, 0, 2) For BEE IN (p, d, q): (0, 0, 2) |
Facebook Prophet | Yearly seasonality: false Weekly seasonality: false Daily seasonality: true |
Recurrent Neural Networks | RNN cell type: LSTM LSTM number: 50 Loss function: mean absolute error Batch size: 20 Optimizer: Adam Learning rate: 1 × 10−3 Epochs: 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrijević, N.; Urošević, V.; Arsić, B.; Herceg, D.; Savić, B. IoT Monitoring and Prediction Modeling of Honeybee Activity with Alarm. Electronics 2022, 11, 783. https://doi.org/10.3390/electronics11050783
Andrijević N, Urošević V, Arsić B, Herceg D, Savić B. IoT Monitoring and Prediction Modeling of Honeybee Activity with Alarm. Electronics. 2022; 11(5):783. https://doi.org/10.3390/electronics11050783
Chicago/Turabian StyleAndrijević, Nebojša, Vlada Urošević, Branko Arsić, Dejana Herceg, and Branko Savić. 2022. "IoT Monitoring and Prediction Modeling of Honeybee Activity with Alarm" Electronics 11, no. 5: 783. https://doi.org/10.3390/electronics11050783
APA StyleAndrijević, N., Urošević, V., Arsić, B., Herceg, D., & Savić, B. (2022). IoT Monitoring and Prediction Modeling of Honeybee Activity with Alarm. Electronics, 11(5), 783. https://doi.org/10.3390/electronics11050783