A Repetitive Low Impedance High Power Microwave Driver
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the HPM Driver
2.2. Design Considerations of the Key Components
2.2.1. Liquids Dielectric Mixtures
2.2.2. Helical Pulse Forming Line
2.2.3. Reliability Model of the PFL with Output Switch Jitter Considered
2.2.4. Partial Core Pulse Transformer
2.2.5. Other Design Considerations
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mesyats, G.A. Pulsed Power; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2005; ISBN 978-0-306-48653-1. [Google Scholar]
- Bluhm, H. Pulsed Power Systems: Principles and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-26137-7. [Google Scholar]
- Sinars, D.B.; Sweeney, M.A.; Alexander, C.S.; Ampleford, D.J.; Ao, T.; Apruzese, J.P.; Aragon, C.; Armstrong, D.J.; Austin, K.N.; Awe, T.J.; et al. Review of Pulsed Power-Driven High Energy Density Physics Research on Z at Sandia. Phys. Plasmas 2020, 27, 070501. [Google Scholar] [CrossRef]
- Yan, J.; Parker, S.; Bland, S. An Investigation Into High-Voltage Spiral Generators Utilizing Thyristor Input Switches. IEEE Trans. Power Electron. 2021, 36, 10005–10019. [Google Scholar] [CrossRef]
- Benford, J.; Swegle, J.A.; Schamiloglu, E. High Power Microwaves, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2015; ISBN 978-0-429-16064-6. [Google Scholar]
- Zhang, J.; Ge, X.; Zhang, J.; He, J.; Fan, Y.; Li, Z.; Jin, Z.; Gao, L.; Ling, J.; Qi, Z. Research Progresses on Cherenkov and Transit-Time High-Power Microwave Sources at NUDT. Matter Radiat. Extrem. 2016, 1, 163–178. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.-W.; Yuan, C.-W.; Zhong, H.-H.; Shu, T.; Zhang, J.-D.; Yang, J.-H.; Yang, H.-W.; Wang, Y.; Luo, L. Experimental Investigation of an Improved MILO. IEEE Trans. Plasma Sci. 2007, 35, 1075–1080. [Google Scholar] [CrossRef]
- Fan, Y.-W.; Wang, X.-Y.; Zhang, Z.-C.; Xun, T.; Yang, H.-W. A High-Efficiency Repetitively Pulsed Magnetically Insulated Transmission Line Oscillator. Vacuum 2016, 128, 39–44. [Google Scholar] [CrossRef]
- Wang, X.; Fan, Y.; Shu, T.; Li, A.; Yu, Y.; Liu, Z. A High-Efficiency Magnetically Insulated Transmission Line Oscillator with Ridged Disk-Loaded Vanes. IEEE Trans. Plasma Sci. 2019, 47, 3974–3977. [Google Scholar] [CrossRef]
- Wang, X.; Fan, Y.; Shu, T.; Yang, B.; Xu, X.; Li, A.; Liu, Z.; Xu, H. Experimental Demonstration of a Ridged Magnetically Insulated Transmission Line Oscillator. IEEE Trans. Microw. Theory Tech. 2021, 69, 1698–1702. [Google Scholar] [CrossRef]
- Xun, T.; Fan, Y.; Yang, H.; Zhang, Z.; Chen, D.; Zhang, J. A Vacuum-Sealed, Gigawatt-Class, Repetitively Pulsed High-Power Microwave Source. J. Appl. Phys. 2017, 121, 234502. [Google Scholar] [CrossRef]
- Mesyats, G.A.; Korovin, S.D.; Gunin, A.V.; Gubanov, V.P.; Stepchenko, A.S.; Grishin, D.M.; Landl, V.F.; Alekseenko, P.I. Repetitively Pulsed High-Current Accelerators with Transformer Charging of Forming Lines. Laser Part. Beams 2003, 21, 197–209. [Google Scholar] [CrossRef]
- Rostov, V.V.; Stepchenko, A.S.; Vykhodtsev, P.V.; Tsygankov, R.V. High-Voltage Drivers Based on Forming Lines with Extended Quasi-Rectangular Pulses for High-Power Microwave Oscillators. Electronics 2022, 11, 406. [Google Scholar] [CrossRef]
- Rainwater, K.; Barnett, D.; Lynn, C.; Dickens, J.; Neuber, A.; Mankowski, J. A 160 J, 100 Hz Rep Rate, Compact Marx Generator for Driving and HPM Source. In Proceedings of the 2016 IEEE International Power Modulator and High Voltage Conference (IPMHVC), San Francisco, CA, USA, 6–9 July 2016; pp. 228–230. [Google Scholar]
- Collier, L.; Walls, M.B.; Dickens, J.; Mankowski, J.; Neuber, A. Solid State Linear Transformer Driver (LTD) Development for HPM Sources. In Proceedings of the 2015 IEEE Pulsed Power Conference (PPC), Austin, TX, USA, 31 May–4 June 2015; pp. 1–4. [Google Scholar]
- Novac, B.M.; Istenic, M.; Luo, J.; Smith, I.R.; Brown, J.; Hubbard, M.; Appelgren, P.; Elfsberg, M.; Hurtig, T.; Moller, C.; et al. A 10-GW Pulsed Power Supply for HPM Sources. IEEE Trans. Plasma Sci. 2006, 34, 1814–1821. [Google Scholar] [CrossRef]
- Novac, B.M.; Wang, M.; Smith, I.R.; Senior, P. A 10 GW Tesla-Driven Blumlein Pulsed Power Generator. IEEE Trans. Plasma Sci. 2014, 42, 2876–2885. [Google Scholar] [CrossRef] [Green Version]
- Sporer, B.J.; Shah, A.P.; Dowhan, G.V.; Shapovalov, R.V.; Packard, D.A.; Wisher, M.; Leckbee, J.J.; Hendricks, K.J.; Hoff, B.W.; Lau, Y.Y.; et al. Multicavity Linear Transformer Driver Facility for Z-Pinch and High-Power Microwave Research. Phys. Rev. Accel. Beams 2021, 24, 100402. [Google Scholar] [CrossRef]
- Song, F.; Li, F.; Zhang, B.; Zhu, M.; Li, C.; Wang, G.; Gong, H.; Gan, Y.; Jin, X. Recent Advances in Compact Repetitive High-Power Marx Generators. Laser Part. Beams 2019, 37, 110–121. [Google Scholar] [CrossRef]
- Su, J.; Zhang, X.; Li, R.; Zhao, L.; Sun, X.; Wang, L.; Zeng, B.; Cheng, J.; Wang, Y.; Peng, J.; et al. An 8-GW Long-Pulse Generator Based on Tesla Transformer and Pulse Forming Network. Rev. Sci. Instrum. 2014, 85, 063303. [Google Scholar] [CrossRef] [PubMed]
- Buntin, T.; Abide, M.; Barnett, D.; Dickens, J.; Neuber, A.; Joshi, R.; Mankowski, J. Compact Marx Generator to Drive a Low-Impedance MILO. In Proceedings of the 2019 IEEE Pulsed Power & Plasma Science (PPPS), Orlando, FL, USA, 23–29 June 2019; pp. 1–3. [Google Scholar]
- Yang, J.; Zhang, Z.; Yang, H.; Zhang, J.; Liu, J.; Yin, Y.; Xun, T.; Cheng, X.; Fan, Y.; Jin, Z.; et al. Compact Intense Electron-Beam Accelerators Based on High Energy Density Liquid Pulse Forming Lines. Matter Radiat. Extrem. 2018, 3, 278–292. [Google Scholar] [CrossRef] [Green Version]
- Tot’meninov, E.M.; Klimov, A.I.; Kurkan, I.K.; Polevin, S.D.; Rostov, V.V. Repetitively Pulsed Relativistic BWO with Enhanced Mechanical Frequency Tunability. IEEE Trans. Plasma Sci. 2008, 36, 2609–2612. [Google Scholar] [CrossRef]
- Bolund, B.F.; Berglund, M.; Bernhoff, H. Dielectric Study of Water/Methanol Mixtures for Use in Pulsed-Power Water Capacitors. J. Appl. Phys. 2003, 93, 2895–2899. [Google Scholar] [CrossRef]
- Yang, H.; Xu, J.; Zhang, J.; Zhong, H.; Wang, Y.; Fan, Y.; Zhang, Z.; Yang, J.; Luo, L.; Zhao, Y. Experiments of a 30 GW, 100 Ns Compact e-Beam Accelerator. In Proceedings of the IET European Conference on European Pulsed Power 2009. Incorporating the CERN Klystron Modulator Workshop, Geneva, Switzerland, 21–25 September 2009; p. 35. [Google Scholar]
- Sharma, S.K.; Deb, P.; Sharma, A.; Shukla, R.; Prabaharan, T.; Adhikary, B.; Shyam, A. Note: Compact Helical Pulse Forming Line for the Generation of Longer Duration Rectangular Pulse. Rev. Sci. Instrum. 2012, 83, 066103. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.L.; Feng, J.H. Effects of Dispersion on Electromagnetic Parameters of Tape-Helix Blumlein Pulse Forming Line of Accelerator. Eur. Phys. J. Appl. Phys. 2012, 57, 30904. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J. Dispersion Analysis of the Solid Helical Pulse-Forming Line. Laser Part. Beams 2015, 33, 405–413. [Google Scholar] [CrossRef]
- Stygar, W.A.; Wagoner, T.C.; Ives, H.C.; Wallace, Z.R.; Anaya, V.; Corley, J.P.; Cuneo, M.E.; Harjes, H.C.; Lott, J.A.; Mowrer, G.R.; et al. Water-Dielectric-Breakdown Relation for the Design of Large-Area Multimegavolt Pulsed-Power Systems. Phys. Rev. Spec. Top.-Accel. Beams 2006, 9, 070401. [Google Scholar] [CrossRef] [Green Version]
- Elizondo, J.M.; Martin, T.H.; Struve, K.W.; Bennett, L.F. The Z-20 Reliability Calculations. In Proceedings of the 14th IEEE International Pulsed Power Conference (IEEE Cat. No. 03CH37472), Dallas, TX, USA, 15–18 June 2003; Digest of Technical Papers. PPC-2003. pp. 895–898. [Google Scholar]
- Yang, H.; Xu, J.; Zhang, J.; Zhong, H. Inter-Layer Voltage Distribution and Insulation Failure of a Spiral Pulse Transformer. In Proceedings of the IET European Conference on European Pulsed Power 2009. Incorporating the CERN Klystron Modulator Workshop, Geneva, Switzerland, 21–25 September 2009; pp. P1–P4. [Google Scholar]
- Zhang, Z.; Yang, H.; Yang, J.; Chen, D.; Zhang, J.; Zhong, H.; Liu, C. Compact Megavolt Pulse Transformer with Inner Magnetic Core and Conical Secondary Windings. In Proceedings of the 2015 IEEE Pulsed Power Conference (PPC), Austin, TX, USA, 31 May–4 June 2015; pp. 1–5. [Google Scholar]
- Zhang, Z.; Liu, Q.; Li, X.; Wu, Z.; Wang, Q.; Yang, H. High Frequency AC-Link Capacitor Charging Power Supply. High Power Laser Part. Beams 2012, 24, 719–722. [Google Scholar] [CrossRef]
- Bochkov, V.D.; Dyagilev, V.M.; Ushich, V.G.; Frants, O.B.; Korolev, Y.D.; Sheirlyakin, I.A.; Frank, K. Sealed-off Pseudospark Switches for Pulsed Power Applications (Current Status and Prospects). IEEE Trans. Plasma Sci. 2001, 29, 802–808. [Google Scholar] [CrossRef]
- Krasik, Y.E.; Leopold, J.G. Initiation of Vacuum Insulator Surface High-Voltage Flashover with Electrons Produced by Laser Illumination. Phys. Plasmas 2015, 22, 083109. [Google Scholar] [CrossRef] [Green Version]
- Xun, T.; Yang, H.; Zhang, J.; Liu, Z.; Wang, Y.; Zhao, Y. A Ceramic Radial Insulation Structure for a Relativistic Electron Beam Vacuum Diode. Rev. Sci. Instrum. 2008, 79, 063303. [Google Scholar] [CrossRef]
- Xun, T.; Yang, H.-W.; Zhang, J.-D. A High-Vacuum High-Electric-Field Pulsed Power Interface Based on a Ceramic Insulator. IEEE Trans. Plasma Sci. 2015, 43, 4130–4135. [Google Scholar] [CrossRef]
- Xun, T.; Zhao, Y.; Yang, H.; Hu, T.; Zhang, Z.; Cheng, X.-B.; Zhang, J.; Zhang, J.; Zhong, H.-H. Developments of Pulsed Electron Beam Sources for High-Power Microwave Applications. IEEE Access 2020, 8, 101351–101358. [Google Scholar] [CrossRef]
Circuit Parameters | Values | Circuit Parameters | Values |
---|---|---|---|
Primary capacitance () | 10 μF | PFL impedance | 3.5 Ω |
Primary capacitor initial voltage | 50 kV | PFL one-way time delay | 39 ns |
Transformer primary inductance () | 18 μH | TL impedance | 7 Ω |
Transformer secondary inductance () | 13 mH | TL one-way time delay | 40 ns |
Transformer coupling coefficient | 0.95 | Output switch equivalent inductance | 130 nH |
Equivalent primary serial resistance () | 150 mΩ | Output switch equivalent capacitance | 0.1 nF |
Equivalent primary inductance () | 110 nH | Equivalent load resistance () | 11 Ω |
Equivalent secondary resistance () | 110 Ω | Equivalent load inductance () | 300 nH |
Equivalent liquid leaking resistance () | 10 kΩ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Zhang, Z.; Gao, J.; Xun, T.; Li, S. A Repetitive Low Impedance High Power Microwave Driver. Electronics 2022, 11, 784. https://doi.org/10.3390/electronics11050784
Yang H, Zhang Z, Gao J, Xun T, Li S. A Repetitive Low Impedance High Power Microwave Driver. Electronics. 2022; 11(5):784. https://doi.org/10.3390/electronics11050784
Chicago/Turabian StyleYang, Hanwu, Zicheng Zhang, Jingming Gao, Tao Xun, and Song Li. 2022. "A Repetitive Low Impedance High Power Microwave Driver" Electronics 11, no. 5: 784. https://doi.org/10.3390/electronics11050784
APA StyleYang, H., Zhang, Z., Gao, J., Xun, T., & Li, S. (2022). A Repetitive Low Impedance High Power Microwave Driver. Electronics, 11(5), 784. https://doi.org/10.3390/electronics11050784