MM-Wave Radar-Based Recognition of Multiple Hand Gestures Using Long Short-Term Memory (LSTM) Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Implemented Gestures
2.3. Data Processing
2.4. Gesture Classification Algorithm
2.5. Validation
3. Results
3.1. Performance of Different Network Types
3.2. Performance with New Subjects
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, H.; Wang, S.; Zhou, G.; Zhang, D. Gesture-Enabled Remote Control for Healthcare. In Proceedings of the 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Philadelphia, PA, USA, 17–19 July 2017; pp. 392–401. [Google Scholar]
- Tateno, S.; Zhu, Y.; Meng, F. Hand Gesture Recognition System for In-car Device Control Based on Infrared Array Sensor. In Proceedings of the 2019 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Hiroshima, Japan, 10–13 September 2019; pp. 701–706. [Google Scholar]
- Lee, D.H.; Hong, K.S. Game interface using hand gesture recognition. In Proceedings of the 5th International Conference on Computer Sciences and Convergence Information Technology, Seoul, Korea, 30 November–2 December 2010; pp. 1092–1097. [Google Scholar]
- Rani, S.S.; Dhrisya, K.J.; Ahalyadas, M. Hand gesture control of virtual object in augmented reality. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 13–16 September 2017; pp. 1500–1505. [Google Scholar]
- Weissmann, J.; Salomon, R. Gesture recognition for virtual reality applications using data gloves and neural networks. In Proceedings of the IJCNN’99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), Washington, DC, USA, 10–16 July 1999; Volume 3, pp. 2043–2046. [Google Scholar]
- Czuszyński, K.; Rumiński, J.; Kwaśniewska, A. Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks. IEEE Sens. J. 2018, 18, 5429–5438. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Ao, D.; Tian, H. Spectrum-Based Hand Gesture Recognition Using Millimeter-Wave Radar Parameter Measurements. IEEE Access 2019, 7, 79147–79158. [Google Scholar] [CrossRef]
- Chung, H.-Y.; Chung, Y.-L.; Tsai, W.-F. An Efficient Hand Gesture Recognition System Based on Deep CNN. In Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, VIC, Australia, 13–15 February 2019; pp. 853–858. [Google Scholar]
- Akhtar, N.; Mian, A. Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey. IEEE Access 2018, 6, 14410–14430. [Google Scholar] [CrossRef]
- Skaria, S.; Al-Hourani, A.; Lech, M.; Evans, R.J. Hand-Gesture Recognition Using Two-Antenna Doppler Radar With Deep Convolutional Neural Networks. IEEE Sens. J. 2019, 19, 3041–3048. [Google Scholar] [CrossRef]
- Kim, Y.; Toomajian, B. Hand Gesture Recognition Using Micro-Doppler Signatures With Convolutional Neural Network. IEEE Access 2016, 4, 7125–7130. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, Z.; Zhou, M. Latern: Dynamic Continuous Hand Gesture Recognition Using FMCW Radar Sensor. IEEE Sens. J. 2018, 18, 3278–3289. [Google Scholar] [CrossRef]
- Chmurski, M.; Mauro, G.; Santra, A.; Zubert, M.; Dagasan, G. Highly-Optimized Radar-Based Gesture Recognition System with Depthwise Expansion Module. Sensors 2021, 21, 7298. [Google Scholar] [CrossRef] [PubMed]
- Tsang, I.J.; Corradi, F.; Sifalakis, M.; Van Leekwijck, W.; Latré, S. Radar-Based Hand Gesture Recognition Using Spiking Neural Networks. Electronics 2021, 10, 1405. [Google Scholar] [CrossRef]
- Yu, M.; Kim, N.; Jung, Y.; Lee, S. A Frame Detection Method for Real-Time Hand Gesture Recognition Systems Using CW-Radar. Sensors 2020, 20, 2321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.R.; Park, J.; Suh, Y.-J. Improving Classification Accuracy of Hand Gesture Recognition Based on 60 GHz FMCW Radar with Deep Learning Domain Adaptation. Electronics 2020, 9, 2140. [Google Scholar] [CrossRef]
- Ritchie, M.; Jones, A.M. Micro-Doppler Gesture Recognition using Doppler, Time and Range Based Features. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–6. [Google Scholar]
- Suh, J.S.; Ryu, S.; Han, B.; Choi, J.; Kim, J.-H.; Hong, S. 24 GHz FMCW Radar System for Real-Time Hand Gesture Recognition Using LSTM. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 860–862. [Google Scholar]
- Wang, Y.; Wang, S.; Zhou, M.; Jiang, Q.; Tian, Z. TS-I3D Based Hand Gesture Recognition Method With Radar Sensor. IEEE Access 2019, 7, 22902–22913. [Google Scholar] [CrossRef]
- Wang, P.; Lin, J.; Wang, F.; Xiu, J.; Lin, Y.; Yan, N.; Xu, H. A Gesture Air-Writing Tracking Method that Uses 24 GHz SIMO Radar SoC. IEEE Access 2020, 8, 152728–152741. [Google Scholar] [CrossRef]
- Franceschini, S.; Ambrosanio, M.; Vitale, S.; Baselice, F.; Gifuni, A.; Grassini, G.; Pascazio, V. Hand Gesture Recognition via Radar Sensors and Convolutional Neural Networks. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–5. [Google Scholar]
- Texas Instruments. AWR1642 Evaluation Module (AWR1642BOOST) Single-Chip mmWave Sensing Solution. 2017. Available online: https://www.ti.com/lit/ug/swru508c/swru508c.pdf?ts=1643402432641 (accessed on 1 January 2022).
- Grobelny, P.; Narbudowicz, A. Hand Gestures Recorded with mm-Wave FMCW Radar (AWR1642). IEEE Dataport, 31 May 2021. Available online: https://ieee-dataport.org/open-access/hand-gestures-recorded-mm-wave-fmcw-radar-awr1642 (accessed on 1 January 2022).
- pytorch.org. Available online: https://pytorch.org/docs/1.9.1/generated/torch.nn.LSTM.html (accessed on 28 January 2022).
Parameter | Value |
---|---|
Antenna configuration | 2TX, 4RX |
Azimuth resolution | 15 |
Range resolution | 0.039 m |
Radial velocity resolution | 0.13 m/s |
Frame duration | 33 ms |
Range detection threshold: 30 dB | 30 dB |
Doppler detection threshold: 30 dB | 30 dB |
Gesture Type | Person1 | Person2 | Person3 | Person4 | Sum |
---|---|---|---|---|---|
Arm to left | 100 | 100 | 100 | 100 | 400 |
Arm to right | 100 | 100 | 100 | 100 | 400 |
Closing fist horizontally | 100 | 100 | 100 | 100 | 400 |
Close fist perpendicularly | 150 | 50 | 100 | 100 | 400 |
Hand away | 200 | 100 | 100 | 0 | 400 |
Hand closer | 100 | 100 | 100 | 100 | 400 |
Hand down | 100 | 100 | 100 | 100 | 400 |
Hand up | 100 | 100 | 100 | 100 | 400 |
Hand rotating palm down | 300 | 0 | 100 | 0 | 400 |
Hand rotating palm up | 300 | 0 | 100 | 0 | 400 |
Hand to left | 100 | 100 | 100 | 0 | 300 |
Hand to right | 100 | 100 | 100 | 0 | 300 |
Epochs | 10 |
Loss function | Cross Entropy Loss |
Optimizer algorithm | Adam |
Optimizer step value | 0.001 |
Machine learning framework | PyTorch |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grobelny, P.; Narbudowicz, A. MM-Wave Radar-Based Recognition of Multiple Hand Gestures Using Long Short-Term Memory (LSTM) Neural Network. Electronics 2022, 11, 787. https://doi.org/10.3390/electronics11050787
Grobelny P, Narbudowicz A. MM-Wave Radar-Based Recognition of Multiple Hand Gestures Using Long Short-Term Memory (LSTM) Neural Network. Electronics. 2022; 11(5):787. https://doi.org/10.3390/electronics11050787
Chicago/Turabian StyleGrobelny, Piotr, and Adam Narbudowicz. 2022. "MM-Wave Radar-Based Recognition of Multiple Hand Gestures Using Long Short-Term Memory (LSTM) Neural Network" Electronics 11, no. 5: 787. https://doi.org/10.3390/electronics11050787
APA StyleGrobelny, P., & Narbudowicz, A. (2022). MM-Wave Radar-Based Recognition of Multiple Hand Gestures Using Long Short-Term Memory (LSTM) Neural Network. Electronics, 11(5), 787. https://doi.org/10.3390/electronics11050787