Delay and Energy-Efficiency-Balanced Task Offloading for Electric Internet of Things
Abstract
:1. Introduction
- Dynamic Tradeoff between Energy Efficiency and Delay: We consider differentiated QoS requirements by establishing the weighted difference between energy efficiency and delay as an optimization objective. The tradeoff between energy efficiency and delay can be dynamically balanced by adjusting the weight according to the requirements of task offloading optimization.
- Low-Complexity and Stable Task Offloading: A low-complexity many-to-one two-sided matching-based algorithm is proposed to establish the stable matching between devices and gateways to solve the problem of task offloading conflicts for the EIoT. The preference lists of devices and gateways are modeled as the energy efficiency and total task offloading delay, respectively.
- Extensive Performance Simulation: Numerous results demonstrate that the proposed algorithm can achieve superior performance in terms of energy efficiency, delay, and the weighted difference between them compared with existing state-of-the-art algorithms. Moreover, the impact of key parameters such as computing resources and SINR threshold on performance are revealed to provide guidance for practical applications.
2. System Model and Problem Formulation
2.1. Task Offloading Model
2.1.1. Data Transmission Model
2.1.2. Delay Model
2.1.3. Energy Efficiency Model
2.2. Problem Formulation
3. Delay and Energy-Efficiency-Balanced Task Offloading for EIoT Based on Two-Sided Matching
3.1. Problem Transformation
3.2. Many-to-One Two-Sided Matching-Based Delay and Energy-Efficiency-Balanced Task Offloading Algorithm
Algorithm 1 Delay and Energy-Efficiency-balanced Task Offloading Algorithm |
|
3.3. Complexity Analysis
4. Simulation Results
4.1. Simulation Parameter Settings
4.2. Simulation Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gong, Y.; Zhang, L.; Liu, R.; Yu, K.; Srivastava, G. Nonlinear MIMO for Industrial Internet of Things in Cyber–Physical Systems. IEEE Trans. Ind. Inform. 2021, 17, 5533–5541. [Google Scholar] [CrossRef]
- Naeem, F.; Tariq, M.; Poor, H.V. SDN-Enabled Energy-Efficient Routing Optimization Framework for Industrial Internet of Things. IEEE Trans. Ind. Inform. 2021, 17, 5660–5667. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, X.; Cao, Y.; Wang, D.; Yang, L. Smart Choice for the Smart Grid: Narrowband Internet of Things (NB-IoT). IEEE Internet Things J. 2018, 5, 1505–1515. [Google Scholar] [CrossRef]
- Zhen, L.; Bashir, A.K.; Yu, K.; Al-Otaibi, Y.D.; Foh, C.H.; Xiao, P. Energy-Efficient Random Access for LEO Satellite-Assisted 6G Internet of Remote Things. IEEE Internet Things J. 2021, 8, 5114–5128. [Google Scholar] [CrossRef]
- Tariq, M.; Adnan, M.; Srivastava, G.; Poor, H.V. Instability Detection and Prevention in Smart Grids Under Asymmetric Faults. IEEE Trans. Ind. Appl. 2020, 56, 4510–4520. [Google Scholar] [CrossRef]
- Tan, L.; Yu, K.; Lin, L.; Cheng, X.; Srivastava, G.; Lin, J.C.W.; Wei, W. Speech Emotion Recognition Enhanced Traffic Efficiency Solution for Autonomous Vehicles in a 5G-Enabled Space-Air-Ground Integrated Intelligent Transportation System. IEEE Trans. Intell. Transp. Syst. 2021, 1–13. [Google Scholar] [CrossRef]
- Zhou, Z.; Liao, H.; Gu, B.; Mumtaz, S.; Rodriguez, J. Resource Sharing and Task Offloading in IoT Fog Computing: A Contract-Learning Approach. IEEE Trans. Emerg. Top. Comput. Intell. 2020, 4, 227–240. [Google Scholar] [CrossRef]
- Tariq, M.; Poor, H.V. Electricity Theft Detection and Localization in Grid-Tied Microgrids. IEEE Trans. Smart Grid 2018, 9, 1920–1929. [Google Scholar] [CrossRef]
- Zhou, Z.; Liao, H.; Gu, B.; Huq, K.M.S.; Mumtaz, S.; Rodriguez, J. Robust Mobile Crowd Sensing: When Deep Learning Meets Edge Computing. IEEE Netw. 2018, 32, 54–60. [Google Scholar] [CrossRef]
- Zhao, L.; Li, H.; Lin, N.; Lin, M.; Fan, C.; Shi, J. Intelligent Content Caching Strategy in Autonomous Driving Towards 6G. IEEE Trans. Intell. Transp. Syst. 2021, 1–11. [Google Scholar] [CrossRef]
- Lu, H.; He, X.; Du, M.; Ruan, X.; Sun, Y.; Wang, K. Edge QoE: Computation Offloading with Deep Reinforcement Learning for Internet of Things. IEEE Internet Things J. 2020, 7, 9255–9265. [Google Scholar] [CrossRef]
- Ali, Z.; Sidhu, G.A.S.; Gao, F.; Jiang, J.; Wang, X. Deep Learning Based Power Optimizing for NOMA Based Relay Aided D2D Transmissions. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 917–928. [Google Scholar] [CrossRef]
- Tran-Dang, H.; Kim, D.S. FRATO: Fog resource based adaptive task offloading for delay-minimizing IoT service provisioning. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 2491–2508. [Google Scholar] [CrossRef]
- Ye, J.; Kobayashi, T.; Wang, X.; Tsuda, H.; Murakawa, M. Audio Data Mining for Anthropogenic Disaster Identification: An Automatic Taxonomy Approach. IEEE Trans. Emerg. Top. Comput. 2020, 8, 126–136. [Google Scholar] [CrossRef]
- Dai, Y.; Xu, D.; Maharjan, S.; Zhang, Y. Joint Computation Offloading and User Association in Multi-Task Mobile Edge Computing. IEEE Trans. Veh. Technol. 2018, 67, 12313–12325. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Pathirana, P.N.; Ding, M.; Seneviratne, A. Privacy-Preserved Task Offloading in Mobile Blockchain with Deep Reinforcement Learning. IEEE Trans. Netw. Serv. Manag. 2020, 17, 2536–2549. [Google Scholar] [CrossRef]
- Zhou, Z.; Liao, H.; Zhao, X.; Ai, B.; Guizani, M. Reliable Task Offloading for Vehicular Fog Computing under Information Asymmetry and Information Uncertainty. IEEE Trans. Veh. Technol. 2019, 68, 8322–8335. [Google Scholar] [CrossRef]
- Shan, F.; Luo, J.; Jin, J.; Wu, W. Offloading Delay Constrained Transparent Computing Tasks with Energy-Efficient Transmission Power Scheduling in Wireless IoT Environment. IEEE Internet Things J. 2019, 6, 4411–4422. [Google Scholar] [CrossRef]
- Huang, X.; Yu, R.; Xie, S.; Zhang, Y. Task-Container Matching Game for Computation Offloading in Vehicular Edge Computing and Networks. IEEE Trans. Intell. Transp. Syst. 2021, 22, 6242–6255. [Google Scholar] [CrossRef]
- Swain, C.; Sahoo, M.N.; Satpathy, A.; Muhammad, K.; Bakshi, S.; Rodrigues, J.J.P.C.; de Albuquerque, V.H.C. METO: Matching-Theory-based Efficient Task Offloading in IoT-Fog Interconnection Networks. IEEE Internet Things J. 2021, 8, 12705–12715. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, P.; Feng, J.; Zhang, Y.; Mumtaz, S.; Rodriguez, J. Computation Resource Allocation and Task Assignment Optimization in Vehicular Fog Computing: A Contract-Matching Approach. IEEE Trans. Veh. Technol. 2019, 68, 3113–3125. [Google Scholar] [CrossRef]
- Zhang, G.; Ni, S.; Zhao, P. Learning-based Joint Optimization of Energy-Delay and Privacy in Multiple-User Edge-Cloud Collaboration MEC Systems. IEEE Internet Things J. 2021, 9, 14911502. [Google Scholar] [CrossRef]
- Yang, T.; Feng, H.; Gao, S.; Jiang, Z.; Qin, M.; Cheng, N.; Bai, L. Two-Stage Offloading Optimization for Energy-Latency Tradeoff with Mobile Edge Computing in Maritime Internet of Things. IEEE Internet Things J. 2020, 7, 5954–5963. [Google Scholar] [CrossRef]
- Liu, C.-F.; Bennis, M.; Debbah, M.; Poor, H.V. Dynamic Task Offloading and Resource Allocation for Ultra-Reliable Low-Latency Edge Computing. IEEE Trans. Commun. 2019, 67, 4132–4150. [Google Scholar] [CrossRef] [Green Version]
- Ko, H.; Pack, S. Distributed Device-to-Device Offloading System: Design and Performance Optimization. IEEE Trans. Mob. Comput. 2021, 20, 2949–2960. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, C.; Zhou, X.; Liu, Z.; Tang, Z. A Code-Oriented Partitioning Computation Offloading Strategy for Multiple Users and Multiple Mobile Edge Computing Servers. IEEE Trans. Ind. Inform. 2020, 16, 4800–4810. [Google Scholar] [CrossRef]
- Nikolaos, P.; Theodore, A. Resource Allocation Management for Indoor Power-Line Communications Systems. IEEE Trans. Power Deliv. 2007, 22, 893–903. [Google Scholar]
- Bai, T.; Pan, C.; Ren, H.; Deng, Y.; Elkashlan, M.; Nallanathan, A. Resource Allocation for Intelligent Reflecting Surface Aided Wireless Powered Mobile Edge Computing in OFDM Systems. IEEE Trans. Wirel. Commun. 2021, 20, 5389–5407. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Z.; Al-Dubai, A.Y.; Min, G.; Li, J.; Hawbani, A.; Zomaya, A.Y. A Novel Prediction-based Temporal Graph Routing Algorithm for Software-Defined Vehicular Networks. IEEE Trans. Intell. Transp. Syst. 2021, 1–16. [Google Scholar] [CrossRef]
- Lv, Z.; Lou, R.; Li, J.; Singh, A.; Song, H. Big Data Analytics for 6G-Enabled Massive Internet of Things. IEEE Internet Things J. 2021, 8, 5350–5359. [Google Scholar] [CrossRef]
- Wang, D.; Men, S. Secure Energy Efficiency for NOMA based Cognitive Radio Networks with Nonlinear Energy Harvesting. IEEE Access 2018, 6, 62707–62716. [Google Scholar] [CrossRef]
- Zhou, Z.; Guo, Y.; He, Y.; Zhao, X.; Bazzi, W.M. Access Control and Resource Allocation for M2M Communications in Industrial Automation. IEEE Trans. Ind. Inform. 2019, 15, 3093–3103. [Google Scholar] [CrossRef]
- Zhao, L.; Zheng, T.; Lin, M.; Hawbani, A.; Shang, J.; Fan, C. SPIDER: A Social Computing Inspired Predictive Routing Scheme for Softwarized Vehicular Networks. IEEE Trans. Intell. Transp. Syst. 2021, 1–12. [Google Scholar] [CrossRef]
- Sun, Y.; Song, C.; Yu, S.; Liu, Y.; Pan, H.; Zeng, P. Energy-Efficient Task Offloading based on Differential Evolution in Edge Computing System with Energy Harvesting. IEEE Access 2021, 9, 16383–16391. [Google Scholar] [CrossRef]
- Redhu, S.; Anupam, M.; Hegde, R.M. Optimal Relay Node Selection for Robust Data Forwarding over Time-Varying IoT Networks. IEEE Trans. Veh. Technol. 2019, 68, 9178–9190. [Google Scholar] [CrossRef]
- Zhang, Q.; Gui, L.; Hou, F.; Chen, J.; Zhu, S.; Tian, F. Dynamic Task Offloading and Resource Allocation for Mobile-Edge Computing in Dense Cloud RAN. IEEE Internet Things J. 2020, 7, 3282–3299. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
I | |
Mbits | |
cycle/s | |
cycle/bit | |
, | W, W |
V | 25 |
dBm | |
16 dB | |
B | MHz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Yang, H.; Wang, J.; Chen, X.; Li, J.; Zhang, S.; Huang, B. Delay and Energy-Efficiency-Balanced Task Offloading for Electric Internet of Things. Electronics 2022, 11, 839. https://doi.org/10.3390/electronics11060839
Wei Y, Yang H, Wang J, Chen X, Li J, Zhang S, Huang B. Delay and Energy-Efficiency-Balanced Task Offloading for Electric Internet of Things. Electronics. 2022; 11(6):839. https://doi.org/10.3390/electronics11060839
Chicago/Turabian StyleWei, Yong, Huifeng Yang, Junqing Wang, Xi Chen, Jianqi Li, Sunxuan Zhang, and Biyao Huang. 2022. "Delay and Energy-Efficiency-Balanced Task Offloading for Electric Internet of Things" Electronics 11, no. 6: 839. https://doi.org/10.3390/electronics11060839
APA StyleWei, Y., Yang, H., Wang, J., Chen, X., Li, J., Zhang, S., & Huang, B. (2022). Delay and Energy-Efficiency-Balanced Task Offloading for Electric Internet of Things. Electronics, 11(6), 839. https://doi.org/10.3390/electronics11060839