Digital Taste in Mulsemedia Augmented Reality: Perspective on Developments and Challenges
Abstract
:1. Introduction
2. Gustatory Taste Stimulation
3. Internet of Things in Augmented Reality
4. Artificial Intelligence and Machine Learning in AR
5. Discussion and Recommendations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakamura, H.; Miyashita, H. Controlling saltiness without salt: Evaluation of taste change by applying and releasing cathodal current. In Proceedings of the 5th International Workshop on Multimedia for Cooking and Eating Activities, Barcelona, Catalonia, Spain, 21 October 2013. [Google Scholar] [CrossRef]
- Aoyama, K. Galvanic taste stimulation method for virtual reality and augmented reality. In Proceedings of the International Conference on Human-Computer Interaction, Copenhagen, Denmark, 19–24 July 2020; Volume 12184. [Google Scholar] [CrossRef]
- Iwata, H.; Yano, H.; Uemura, T.; Moriya, T. Food Simulator. IEEE Xplore Comput. Graph. Appl. 2004, 24, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Ooba, N.; Aoyama, K.; Nakamura, H.; Miyashita, H. Unlimited electric gum: A Piezo-based Electric Taste Apparatus Activated by Chewing. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, Berlin, Germany, 17 October 2018. [Google Scholar] [CrossRef]
- Narumi, T.; Ban, Y.; Kajinami, T.; Tanikawa, T.; Hirose, M. Augmented perception of satiety: Controlling food consumption by changing apparent size of food with augmented reality. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Austin, TX, USA, 5–10 May 2012. [Google Scholar] [CrossRef]
- Narumi, T.; Nishizaka, S.; Kajinami, T.; Tanikawa, T.; Hirose, M. Augmented reality flavors: Gustatory display based on Edible Marker and cross-modal interaction. In Proceedings of the Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011. [Google Scholar] [CrossRef]
- Lim, J.; Green, B.G. Tactile interaction with taste localization: Influence of gustatory quality and intensity. Chem. Senses 2008, 33, 137–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, M.; Covington, J.A.; Gardner, J.W. Combined electronic nose and tongue for a flavor sensing system. Sens. Actuators B Chem. 2011, 156, 832–839. [Google Scholar] [CrossRef] [Green Version]
- Tahara, Y.; Toko, K. Electronic tongues—A review. IEEE Sens. J. 2013, 13, 3001–3011. [Google Scholar] [CrossRef]
- Ranasinghe, N.; Do, E.Y.L. Digital Lollipop: Studying Electrical Stimulation on the Human Tongue to Simulate Taste Sensations. ACM Trans. Multimed. Comput. Commun. Appl. 2016, 13, 1–22. [Google Scholar] [CrossRef]
- Ranasinghe, N.; Lee, K.Y.; Suthokumar, G.; Do, E.Y.L. Taste+: Digitally enhancing taste sensations of food and beverages. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014. [Google Scholar] [CrossRef]
- Ranasinghe, N.; Nakatsu, R.; Nii, H.; Gopalakrishnakone, P. Tongue mounted interface for digitally actuating the sense of taste. In Proceedings of the International Symposium on Wearable Computers ISWC, Newcastle, UK, 18–22 June 2012. [Google Scholar] [CrossRef]
- Ranasinghe, N.; Cheok, A.D.; Nakatsu, R. Taste/IP: The sensation of taste for digital communication. In Proceedings of the 14th ACM International Conference on Multimodal Interaction, Santa Monica, CA, USA, 22–26 October 2012. [Google Scholar] [CrossRef]
- Aoyama, K.; Sakurai, K.; Sakurai, S.; Mizukami, M.; Maeda, T.; Ando, H. Galvanic tongue stimulation inhibits five basic tastes induced by aqueous electrolyte solutions. Front. Psychol. 2017, 8, 2112. [Google Scholar] [CrossRef]
- Vi, C.T.; Ablart, D.; Arthur, D.; Obrist, M. Gustatory interface: The challenges of ‘how’ to stimulate the sense of taste. In Proceedings of the 2nd ACM SIGCHI International Workshop on Multisensory Approaches to Human-Food Interaction, Glasgow, UK, 13 November 2017. [Google Scholar] [CrossRef]
- Aoyama, K.; Sakurai, K.; Furukawa, M.; Maeda, T.; Ando, H. New Method for Inducing, Inhibiting, and Enhancing Tastes Using Galvanic Jaw Stimulation. Trans. Virtual Real. Soc. Jpn. 2017, 22, 137–143. [Google Scholar]
- Sardo, J.D.P.; Semião, J.; Monteiro, J.M.; Pereira, J.A.R.; de Freitas, M.A.G.; Esteves, E.; Rodrigues, J.M.F. Portable Device for Touch, Taste and Smell Sensations in Augmented Reality Experiences. In INCREaSE; Springer: Cham, Switzerland, 2018; pp. 305–320. [Google Scholar]
- Nakano, K.; Kiyokawa, K.; Horita, D.; Yanai, K.; Sakata, N.; Narumi, T. Enchanting your noodles: GAN-based real-time food-to-food translation and its impact on vision-induced gustatory manipulation. In Proceedings of the 26th IEEE Conference on Virtual Reality and 3d User Interfaces, VR 2019, Osaka, Japan, 23–27 March 2019. [Google Scholar] [CrossRef]
- Nakano, K.; Horita, D.; Sakata, N.; Kiyokawa, K.; Yanai, K.; Narumi, T. DeepTaste: Augmented reality gustatory manipulation with GAN-based real-time food-to-food translation. In Proceedings of the IEEE International Symposium on Mixed and Augmented Reality, Beijing, China, 14–18 October 2019. [Google Scholar] [CrossRef]
- Aoyama, K.; Sakurai, K.; Ando, H.; Maeda, T.; Hara, A. Continuing Enhancement Effect of Repetitive Square Current Stimulation on Five Basic Taste. Trans. Virtual Real. Soc. Jpn. 2019, 24, 13–21. [Google Scholar] [CrossRef]
- Sakurai, K.; Aoyama, K.; Mizukami, M.; Maeda, T.; Ando, H. Saltiness and umami suppression by cathodal electrical stimulation. In Proceedings of the 1st Workshop on Multi-Sensorial Approaches to Human-Food Interaction, Tokyo Japan, 16 November 2016. [Google Scholar] [CrossRef]
- Mizoguchi, I.; Sakurai, S.; Hirota, K.; Nojima, T. Grutio: System for Reproducing Swallowing Sensation Using Neck-Skin Movement. IEEE Access 2021, 9, 105297–105307. [Google Scholar] [CrossRef]
- Wu, X.; Tahara, Y.; Yatabe, R.; Toko, K. Taste sensor: Electronic tongue with lipid membranes. Anal. Sci. 2020, 36, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Miyashita, H. Taste display that reproduces tastes measured by a taste sensor. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, Virtual Event USA, 20–23 October 2020. [Google Scholar] [CrossRef]
- Tahara, Y.; Nakashi, K.; Ji, K.; Ikeda, A.; Toko, K. Development of a portable taste sensor with a lipid/polymer membrane. Sensors 2013, 13, 1076–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalal, L.; Popescu, V.; Murroni, M. IoT architecture for multisensorial media. In Proceedings of the 2017 IEEE URUCON, URUCON 2017, Montevideo, Uruguay, 11 December 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Barakabitze, A.A.; Barman, N.; Ahmad, A.; Zadtootaghaj, S.; Sun, L.; Martini, M.G.; Atzori, L. QoE management of multimedia streaming services in future networks: A tutorial and survey. IEEE Commun. Surv. Tutor. 2020, 22, 526–565. [Google Scholar] [CrossRef] [Green Version]
- Karunanayaka, K.; Johari, N.; Hariri, S.; Camelia, H.; Bielawski, K.S.; Cheok, A.D. New thermal taste actuation technology for future multisensory virtual reality and internet. IEEE Trans. Vis. Comput. Graph. 2018, 24, 1496–1505. [Google Scholar] [CrossRef]
- Fritz, F.; Preissner, R.; Banerjee, P. VirtualTaste: A web server for the prediction of organoleptic properties of chemical compounds. Nucleic Acids Res. 2021, 49, W679–W684. [Google Scholar] [CrossRef]
- Yang, Z.; Pathak, P.H.; Sha, M.; Zhu, T.; Gan, J.; Hu, P.; Mohapatra, P. On the feasibility of estimating soluble sugar content using millimeter-wave. In Proceedings of the 2019 Internet of Things Design and Implementation, Montreal, QC, Canada, 15–18 April 2019; pp. 13–24. [Google Scholar] [CrossRef]
- Kajal, S.; Yadav, K.S.; Bajaniya, R.S.; Gholap, B.A.; Kadam, R.P. IoT based detection of microbial activity in raw milk by using Intel Galileo Gen. Int. Res. J. Eng. Technol. 2017, 4, 1. [Google Scholar]
- Zia, S.; Spohrer, K.; Merkt, N.; Wenyong, D.; He, X.; Müller, J. Non-invasive water status detection in grapevine (Vitis vinifera L.) by thermography. Int. J. Agric. Biol. Eng. 2009, 2, 46–54. [Google Scholar] [CrossRef]
- di Gennaro, S.F.; Matese, A.; Mancin, M.; Primicerio, J.; Palliotti, A. An open-source and low-cost monitoring system for precision enology. Sensors 2014, 14, 23388–23397. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, S.Y.; Makhtar, M.; Rozaimee, A.; Aziz, A.A.; Jamal, A.A. Classification model for water quality using machine learning techniques. Int. J. Softw. Eng. Its Appl. 2015, 9, 45–52. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, J. The prediction of food additives in the fruit juice based on electronic nose with chemometrics. Food Chem. 2017, 230, 208–214. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Huang, G.B.; Liu, T.; Tan, X. Taste Recognition in E-Tongue Using Local Discriminant Preservation Projection IEEE Trans. IEEE Trans. Cybern. 2019, 49, 947–960. [Google Scholar] [CrossRef]
- Leon-Medina, J.X.; Cardenas-Flechas, L.J.; Tibaduiza, D.A. A data-driven methodology for the classification of different liquids in artificial taste recognition applications with a pulse voltammetric electronic tongue. Int. J. Distrib. Sens. Netw. 2019, 10, 1550147719881601. [Google Scholar] [CrossRef] [Green Version]
- Dahal, K.R.; Dahal, J.N.; Banjade, H.; Gaire, S. Prediction of Wine Quality Using Machine Learning Algorithms. Open J. Stat. 2021, 11, 278–289. [Google Scholar] [CrossRef]
- Saha, P.; Ghorai, S.; Tudu, B.; Bandyopadhyay, R.; Bhattacharyya, N. Tea Quality Prediction by Sparse Modeling of Electronic Tongue Signals. IEEE Trans. Instrum. Meas. 2018, 68, 3046–3053. [Google Scholar] [CrossRef]
- Patil, A.B.; Bachute, M.R.; Kotecha, K. Artificial Perception of the Beverages: An In-Depth Review of the Tea Sample. IEEE Access 2021, 9, 82761–82785. [Google Scholar] [CrossRef]
- Gutiérrez-Capitán, M.; Brull-Fontserè, M.; Jiménez-Jorquera, C. Organoleptic analysis of drinking water using an electronic tongue based on electrochemical microsensors. Sensors 2019, 19, 1435. [Google Scholar] [CrossRef] [Green Version]
- Akitomi, H.; Tahara, Y.; Yasuura, M.; Kobayashi, Y.; Ikezaki, H.; Toko, K. Quantification of tastes of amino acids using taste sensors. Sens. Actuators B Chem. 2013, 179, 276–281. [Google Scholar] [CrossRef]
S. No | Ref. No./ Short Title | Outputs | Potential Extensions |
---|---|---|---|
1 | [3] Food Simulator | A bite force measurement and replication device with assistive hints for recreating the texture of foods. | The contraption replicated the force of biting with audio and chemical feedback. It could be coupled with an AR overlay headset to replicate the complete experience of consuming virtual food. |
2 | [10] Digital Lollipop | Application of cathodal current using the body as the closed-circuit conductor for ion transfer. Causes the saltiness to increase upon release of the signal. | The form factor of the output electrodes could be altered to target multiple taste areas simultaneously. More channels could be added to test multiple stimuli. |
3 | [1] Controlling saltiness without salt | A single-channel bipolar device that is capable of anode/cathode discharge with custom output wave stimulus. | The nature of the conductive electrodes, their respective ion-taste and the toxicity could be experimented with to produce an optimum electrode. |
4 | [14] Galvanic tongue stimulation inhibits five basic | Externally applied jaw stimulation module for enhancing and inhibiting taste. | The whole system can be made into a compact wearable IoT AR-VR setup. |
5 | [23] Taste sensor: Electronic tongue with lipid membranes | An electronic tongue that measures taste-inducing electrolytic concentration in food and converts it to digital format. | The e-tongue requires a more compact form factor for mobile application. It could be built as a small embedded system with the lipid sensor in a smaller size as was built in 2013 [25]. |
6 | [24] Taste display that reproduces tastes measured by a taste sensor | Software GUI that controls a 5-channel GTS module that is capable of reproducing any taste and calibrating it. | This system could be used in tandem with edge nodes such as AR visors. |
Accuracy in Percentage Classifier Learning Algorithm | SVM | ELM | KELM |
---|---|---|---|
PCA | 93 | 93.18 | 96.48 |
PCA (Kernelized) | 89.49 | 87.35 | 91.23 |
LDA | 94.74 | 94.5 | 97.35 |
LPP-S | 93.87 | 94.94 | 95.61 |
LPP-H | 94.74 | 94.84 | 95.61 |
LPDP-S | 96.48 | 95.48 | 96.48 |
LPDP-H | 97.35 | 96.51 | 97.35 |
LDPP-S | 97.35 | 96.69 | 98.22 |
LDPP-H | 98.22 | 94.56 | 98.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duggal, A.S.; Singh, R.; Gehlot, A.; Rashid, M.; Alshamrani, S.S.; AlGhamdi, A.S. Digital Taste in Mulsemedia Augmented Reality: Perspective on Developments and Challenges. Electronics 2022, 11, 1315. https://doi.org/10.3390/electronics11091315
Duggal AS, Singh R, Gehlot A, Rashid M, Alshamrani SS, AlGhamdi AS. Digital Taste in Mulsemedia Augmented Reality: Perspective on Developments and Challenges. Electronics. 2022; 11(9):1315. https://doi.org/10.3390/electronics11091315
Chicago/Turabian StyleDuggal, Angel Swastik, Rajesh Singh, Anita Gehlot, Mamoon Rashid, Sultan S. Alshamrani, and Ahmed Saeed AlGhamdi. 2022. "Digital Taste in Mulsemedia Augmented Reality: Perspective on Developments and Challenges" Electronics 11, no. 9: 1315. https://doi.org/10.3390/electronics11091315
APA StyleDuggal, A. S., Singh, R., Gehlot, A., Rashid, M., Alshamrani, S. S., & AlGhamdi, A. S. (2022). Digital Taste in Mulsemedia Augmented Reality: Perspective on Developments and Challenges. Electronics, 11(9), 1315. https://doi.org/10.3390/electronics11091315