Energy Efficient Enhancement in a 5.8 GHz Batteryless Node Suitable for Backscattering Communications
Abstract
:1. Introduction
2. The BackCom Node Key’s Functional Blocks
- Firstly, the base station queries the node and supplies it with a continuous wave RF signal at 5.8 GHz;
- Secondly, the RF to DC converter and the DC/DC boost harvest the received RF energy and charge the ;
- Thirdly, when reaches the desired level, , the harvester enables the microcontroller, which controls the backscattering modulator through a GPIO pin;
- Finally, under the control of the microcontroller, the modulator backscatters the RF continuous signal by transmitting the data.
2.1. RF Energy Harvester
2.2. Modulator
2.3. Antenna
3. The BackCom Node Prototype
4. The BackCom Node Prototype’s Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mishu, M.K.; Rokonuzzaman, M.; Pasupuleti, J.; Shakeri, M.; Rahman, K.S.; Hamid, F.A.; Tiong, S.K.; Amin, N. Prospective Efficient Ambient Energy Harvesting Sources for IoT-Equipped Sensor Applications. Electronics 2020, 9, 1345. [Google Scholar] [CrossRef]
- Tubis, A.A.; Rohman, J. Intelligent Warehouse in Industry 4.0—Systematic Literature Review. Sensors 2023, 23, 4105. [Google Scholar] [CrossRef]
- De Capua, C.; Fulco, G.; Lugarà, M.; Ruffa, F. An Improvement Strategy for Indoor Air Quality Monitoring Systems. Sensors 2023, 23, 3999. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Z.; Hong, Z.; Chen, C.; Wu, J.; Maharjan, S.; Zheng, Z.; Zhang, Y. Cooperative and distributed computation offloading for blockchain-empowered industrial Internet of Things. IEEE Internet Things J. 2019, 6, 8433–8446. [Google Scholar] [CrossRef]
- Bartoli, C.; Bonanni, M.; Chiti, F.; Pierucci, L.; Cidronali, A.; Collodi, G.; Maddio, S. Toward the Web of Industrial Things: A Publish-Subscribe Oriented Architecture for Data and Power Management. Sensors 2022, 22, 4882. [Google Scholar] [CrossRef]
- Liu, W.; Huang, K.; Zhou, X.; Durrani, S. Next generation backscatter communication: Systems, techniques, and applications. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 69. [Google Scholar] [CrossRef]
- Khriji, S.; Chéour, R.; Kanoun, O. Dynamic Voltage and Frequency Scaling and Duty-Cycling for Ultra Low-Power Wireless Sensor Nodes. Electronics 2022, 11, 4071. [Google Scholar] [CrossRef]
- Cidronali, A.; Nair, V.; Collodi, G.; Lewis, J.H.; Camprini, M.; Manes, G.; Goronkin, H. MMIC applications of heterostructure interband tunnel devices. IEEE Trans. Microw. Theory Tech. 2003, 51, 1351–1367. [Google Scholar] [CrossRef]
- Torres, R.; Pereira, F.; Correia, R.; Carvalho, N.B. An All-Digital Ambient Backscatter solution powered by Energy Harvesting. In Proceedings of the 2021 IEEE MTT-S International Microwave and RF Conference (IMARC), Kanpur, India, 17–19 December 2021; pp. 1–3. [Google Scholar]
- Rezaei, F.; Galappaththige, D.; Tellambura, C.; Herath, S. Coding Techniques for Backscatter Communications—A Contemporary Survey. IEEE Commun. Surveys Tutor. 2023. [Google Scholar] [CrossRef]
- Niu, J.P.; Li, G.Y. An Overview on Backscatter Communications. J. Commun. Inf. Netw. 2019, 4, 1–14. [Google Scholar] [CrossRef]
- Wu, W.; Wang, X.; Hawbani, A.; Yuan, L.; Gong, W. A survey on ambient backscatter communications: Principles, systems, applications, and challenges. Comput. Netw. 2022, 216, 109235. [Google Scholar] [CrossRef]
- Memon, M.L.; Saxena, N.; Roy, A.; Shin, D.R. Backscatter Communications: Inception of the Battery-Free Era—A Comprehensive Survey. Electronics 2019, 8, 129. [Google Scholar] [CrossRef]
- Khan, W.U.; Memon, F.H.; Dev, K.; Javed, M.A.; Do, D.T.; Qureshi, N.M.F. Ambient BackCom in beyond 5G NOMA networks: A multi-cell resource allocation framework. Digit. Commun. Netw. 2022, 8, 1005–1013. [Google Scholar] [CrossRef]
- Correia, R.; Carvalho, N.B.; Kawasaki, S. Continuously Power Delivering for Passive Backscatter Wireless Sensor Networks. IEEE Trans. Microw. Theory Tech. 2016, 64, 3723–3731. [Google Scholar] [CrossRef]
- Belo, D.; Correia, R.; Pinho, P.; Carvalho, N.B. Enabling a constant and efficient flow of wireless energy for IoT sensors. In Proceedings of the IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 1342–1344. [Google Scholar]
- Qaragoez, Y.; Pollin, S.; Schreurs, D. FDD for Low Power Backscattering in Batteryless Sensor Nodes. In Proceedings of the 51st European Microwave Conference (EuMC), London, UK, 4–6 April 2022; pp. 753–756. [Google Scholar]
- Cidronali, A.; Maddio, S.; Collodi, G.; Manes, G. Design trade-off for a compact 5.8 GHz DSRC transponder front-end. Microw. Opt. Technol. Lett. 2015, 57, 1187–1191. [Google Scholar] [CrossRef]
- Toro, U.S.; Wu, K.; Leung, V.C.M. Backscatter Wireless Communications and Sensing in Green Internet of Things. IEEE Trans. Green Commun. Netw. 2022, 6, 37–55. [Google Scholar] [CrossRef]
- Passafiume, M.; Collodi, G.; Cidronali, A. Optimum Design of Low Energy Harvesting Detector at 5.8 GHz suitable for COTS devices. In Proceedings of the 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA), Pisa, Italy, 25–27 September 2019; pp. 6–10. [Google Scholar]
- Passafiume, M.; Collodi, G.; Cidronali, A. Design Principles of Batteryless Transponder for Vehicular DSRC at 5.8 GHz. IEEE J. Radio Freq. Identif. 2020, 4, 491–505. [Google Scholar] [CrossRef]
- Texas Instruments Incorporated. BQ25570: Nano Power Boost Charger and Buck Converter for Energy Harvester Powered Applications; Texas Instruments Incorporated: Dallas, TX, USA, 2019. [Google Scholar]
- Collodi, G.; Maddio, S.; Pelosi, G. Design of a compact and highly efficient energy harvester system suitable for battery-less low cost on-board unit applications. Electronics 2021, 10, 3. [Google Scholar] [CrossRef]
- Torres, R.; Correia, R.; Carvalho, N.B.; Daskalakis, S.; Goussetis, G.; Ding, Y.; Georgiadis, A.; Eid, A.; Hester, J.; Tentzeris, M.M. Backscatter communications. IEEE J. Microwaves 2021, 1, 864–878. [Google Scholar] [CrossRef]
- Maddio, S.; Pelosi, G.; Righini, M.; Selleri, S. A slotted patch antenna with enhanced gain pattern for automotive applications. Prog. Electromagn. Res. Lett. 2021, 95, 135–141. [Google Scholar] [CrossRef]
- Atmel Corporation. AT17LV512A: FPGA Configuration EEPROM Memory 3.3V and 5.0V; Atmel Corporation: San Jose, CA, USA, 2014. [Google Scholar]
- Passafiume, M.; Collodi, G.; Cidronali, A. Improving Wireless Power Transfer Efficiency With DC/DC Boost Charger by Multi-Sine Excitation at 5.8 GHz. IEEE Microw. Wirel. Components Lett. 2022, 32, 760–763. [Google Scholar] [CrossRef]
- Qi, C.; Frederick, Q.; Davis, K.; Lindsay, D.; Cox, J.; Parke, S.; Griffin, J.D.; Durgin, G.D. A 5.8 GHz Energy Harvesting Tag for Sensing Applications in Space. In Proceedings of the 2018 6th IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Huntsville, AL, USA, 11–13 December 2018; pp. 218–223. [Google Scholar]
- Olule, L.J.A.; Gnanagurunathan, G.; Kumar, N.T.; Kasi, B. Single band RF Energy Harvesting at 5.8 GHz using EBG unit cells. In Proceedings of the 2018 IEEE International RF and Microwave Conference (RFM), Penang, Malaysia, 17–19 December 2018; pp. 352–355. [Google Scholar]
- Janhunen, J.; Mikhaylov, K.; Petäjäjärvi, J.; Sonkki, M. Wireless Energy Transfer Powered Wireless Sensor Node for Green IoT: Design, Implementation and Evaluation. Sensors 2019, 19, 90. [Google Scholar] [CrossRef]
- Nguyen, X.V.L.; Gerges, T.; Bevilacqua, P.; Duchamp, J.-M.; Benech, P.; Verdier, J.; Lombard, P.; Linge, P.U.; Mieyeville, F.; Cabrera, M.; et al. Radio-Frequency Energy Harvesting Using Rapid 3D Plastronics Protoyping Approach: A Case Study. J. Low Power Electron. Appl. 2023, 13, 19. [Google Scholar] [CrossRef]
- Han, K.; Huang, K. Wirelessly powered backscatter communication networks: Modeling, coverage, and capacity. IEEE Trans. Wirel. Commun. 2017, 16, 2548–2561. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collodi, G.; Righini, M.; Passafiume, M.; Cidronali, A. Energy Efficient Enhancement in a 5.8 GHz Batteryless Node Suitable for Backscattering Communications. Electronics 2023, 12, 2256. https://doi.org/10.3390/electronics12102256
Collodi G, Righini M, Passafiume M, Cidronali A. Energy Efficient Enhancement in a 5.8 GHz Batteryless Node Suitable for Backscattering Communications. Electronics. 2023; 12(10):2256. https://doi.org/10.3390/electronics12102256
Chicago/Turabian StyleCollodi, Giovanni, Monica Righini, Marco Passafiume, and Alessandro Cidronali. 2023. "Energy Efficient Enhancement in a 5.8 GHz Batteryless Node Suitable for Backscattering Communications" Electronics 12, no. 10: 2256. https://doi.org/10.3390/electronics12102256
APA StyleCollodi, G., Righini, M., Passafiume, M., & Cidronali, A. (2023). Energy Efficient Enhancement in a 5.8 GHz Batteryless Node Suitable for Backscattering Communications. Electronics, 12(10), 2256. https://doi.org/10.3390/electronics12102256