3D Smooth Trajectory Planning for UAVs under Navigation Relayed by Multiple Stations Using Bézier Curves
Abstract
:1. Introduction
- To the best of our knowledge, this is the first attempt to address the 3D smooth trajectory planning problem for a UAV under NRMS. Instead of line segments used in prior studies, a piecewise Bézier curve is applied to represent a continuous and smooth UAV trajectory in 3D space, which transforms an infinite number of trajectory variables into limited ones without loss of smoothness. This problem involves two levels of variables: the upper-level discrete station sequence and the lower-level continuous spatial and temporal parameters of the UAV trajectory. It is formulated as a bi-level, mixed-variable, constrained optimisation problem with the objective function being the mission completion time, which is subject to various constraints related to the NRMS and the UAV’s manoeuvrability. This problem is difficult to solve due to the interdependence of the two levels, non-convexity, and the presence of mixed variables.
- To tackle this challenging problem, an efficient decoupling framework is proposed, where a high-quality approximate station sequence is obtained by first leveraging techniques from graph theory and then performing UAV trajectory planning based on the obtained station sequence. Compared with the enumeration method, the proposed decoupling approach can obtain a feasible and high-quality solution in a short computational time and shows excellent scalability, making it suitable for large-scale scenarios.
- For lower-level UAV trajectory planning, a feasible initial trajectory is carefully designed, which provides a good start for later iterations. As the sub-problem with the fixed time allocation is a second-order cone programming (SOCP) problem and can be solved by off-the-shelf solvers efficiently, alternative minimisation is conducted between the time durations for trajectory segments and the control points’ locations of the curves. To update the temporal parameters, the entire trajectory is divided into several segments by fixing the boundary conditions at the endpoints, and then the time durations can be optimised separately. Compared with other non-linear optimisation algorithms, the proposed alternative minimisation-based method can obtain a better trajectory within the given computational time.
2. Problem Formulation
2.1. Decision Variables
2.1.1. Station Sequence
2.1.2. UAV Trajectory
- ●
- Endpoint interpolation property: a Bézier curve always starts at its first control point and ends at its last control point.
- ○
- Trajectory segments can be connected easily.
- ●
- Convex hull property: a Bézier curve is entirely confined within the convex hull defined by its control points.
- ○
- A trajectory segment is constrained within a station’s navigation range (i.e., a hemisphere, which is convex) as long as all its control points are located within this convex area.
- ●
- Hodograph property: the derivative of a Bézier curve is also a Bézier curve.
- ○
- The velocity and acceleration along the trajectory can also be easily constrained.
2.2. Constraints
2.2.1. Constraints on Initial and Final States
2.2.2. Constraints on Continuity
2.2.3. Constraints on Connectivity
2.2.4. Constraints on Altitude
2.2.5. Constraints on Dynamic Feasibility
2.3. Optimisation Model
3. Algorithm Design
3.1. Graph Theory-Based Station Routing Algorithm
3.2. Alternative Minimisation-Based UAV Trajectory Planning
Algorithm 1 Alternative Minimisation-Based UAV Trajectory Planning Algorithm. |
|
Algorithm 2 Initial Trajectory Generation. |
|
Algorithm 3 Binary Search. |
|
3.2.1. Initial Trajectory Generation
3.2.2. Update Operation of Control Point Locations
3.2.3. Update Operation of Time Allocation
4. Numerical Results
4.1. Test Cases
4.2. Performance of the Decoupling Framework
4.3. Performance of the AM-Based Trajectory Planning Method
- NLopt [37,38], which is a popular and widely used open-source library for non-linear optimisation, supports both derivative-based and derivative-free optimisation, along with local and global optimisation. With no derivative information, six derivative-free local optimisation algorithms are compared, namely COBYLA, BOBYQA, NEWUOA-BOUND, PRAXIS, NELDERMEAD, and SBPLX.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
UAV | Unmanned aerial vehicle |
VLOS | Visual line of sight |
BVLOS | Beyond visual line of sight |
GCS | Ground control station |
NRMS | Navigation relayed by multiple stations |
3D | Three-dimensional |
SPP | Shortest path problem |
2D | Two-dimensional |
SOCP | Second-order cone programming |
AM | Alternative minimisation |
EM | Enumeration approach |
DC | Decoupling approach |
BGD | Backtracking gradient descent |
References
- Valavanis, K.P.; Vachtsevanos, G.J. Handbook of Unmanned Aerial Vehicles; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Zhang, H.; Xin, B.; Dou, L.; Chen, J.; Hirota, K. A Review of Cooperative Path Planning of an Unmanned Aerial Vehicle Group. Front. Inf. Technol. Electron. Eng. 2020, 21, 1671–1694. [Google Scholar] [CrossRef]
- Khan, S.; Tufail, M.; Khan, M.T.; Khan, Z.A.; Iqbal, J.; Wasim, A. A Novel Framework for Multiple Ground Target Detection, Recognition and Inspection in Precision Agriculture Applications Using a UAV. Unmanned Syst. 2022, 10, 45–56. [Google Scholar] [CrossRef]
- Feng, K.; Li, W.; Han, J.; Pan, F. Low-Latency Aerial Images Object Detection for UAV. Unmanned Syst. 2022, 10, 57–67. [Google Scholar] [CrossRef]
- Zhang, R.; Dou, L.; Xin, B.; Chen, C.; Deng, F.; Chen, J. A Review on the Truck and Drone Cooperative Delivery Problem. Unmanned Syst. 2023, 12, 1–25. [Google Scholar] [CrossRef]
- UAV Market by Point of Sale, Systems, Platform, Function, End Use, Application, Type, Mode of Operation, Mtow, Range and Region—Global Forecast to 2027. Available online: https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.html (accessed on 30 September 2022).
- Operation and Certification of Small Unmanned Aircraft Systems. Available online: https://www.federalregister.gov/documents/2016/06/28/2016-15079/operation-and-certification-of-small-unmanned-aircraft-systems (accessed on 28 June 2016).
- Unmanned Aircraft System Operations in UK Airspace—Guidance. Available online: https://publicapps.caa.co.uk/modalapplication.aspx?appid=11&mode=detail&id=415 (accessed on 22 December 2022).
- Qi, M.; Dou, L.; Xin, B.; Chen, J. Optimal Path Planning for an Unmanned Aerial Vehicle under Navigation Relayed by Multiple Stations to Intercept a Moving Target. In Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control, Melbourne, Australia, 12–15 December 2017; pp. 2744–2749. [Google Scholar]
- Qi, M.; Dou, L.; Xin, B.; Chen, J. A Branch-and-Bound Approach for Path Planning of Vehicles under Navigation Relayed by Multiple Stations. In Proceedings of the 2017 11th Asian Control Conference, Gold Coast, Australia, 17–20 December 2017; pp. 168–173. [Google Scholar]
- Qi, M.; Dou, L.; Xin, B.; Chen, J. Optimal Path Planning for Vehicles under Navigation Relayed by Multiple Stations. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics, Banff, AB, Canada, 5–8 October 2017; pp. 1465–1470. [Google Scholar]
- Zeng, Y.; Lyu, J.; Zhang, R. Cellular-Connected UAV: Potential, Challenges, and Promising Technologies. IEEE Wirel. Commun. 2018, 26, 120–127. [Google Scholar] [CrossRef]
- Song, Q.; Zeng, Y.; Xu, J.; Jin, S. A Survey of Prototype and Experiment for UAV Communications. Sci. China Inf. Sci. 2021, 64, 140301. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, Y.; Zhang, R. Cellular-Enabled UAV Communication: A Connectivity-Constrained Trajectory Optimization Perspective. IEEE Trans. Commun. 2019, 67, 2580–2604. [Google Scholar] [CrossRef]
- Fonseca, E.; Galkin, B.; Amer, R.; DaSilva, L.A.; Dusparic, I. Adaptive Height Optimization for Cellular-Connected UAVs: A Deep Reinforcement Learning Approach. IEEE Access 2023, 11, 5966–5980. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, R. Radio Map-Based 3D Path Planning for Cellular-Connected UAV. IEEE Trans. Wirel. Commun. 2021, 20, 1975–1989. [Google Scholar] [CrossRef]
- Bulut, E.; Guevenc, I. Trajectory Optimization for Cellular-Connected UAVs with Disconnectivity Constraint. In Proceedings of the 2018 IEEE International Conference on Communications Workshops, Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar]
- Zhang, S.; Zhang, R. Trajectory Optimization for Cellular-Connected UAV Under Outage Duration Constraint. J. Commun. Inf. Netw. 2019, 4, 55–71. [Google Scholar] [CrossRef]
- Zeng, Y.; Xu, X.; Jin, S.; Zhang, R. Simultaneous Navigation and Radio Mapping for Cellular-Connected UAV With Deep Reinforcement Learning. IEEE Trans. Wirel. Commun. 2021, 20, 4205–4220. [Google Scholar] [CrossRef]
- Chen, Y.J.; Huang, D.Y. Joint Trajectory Design and BS Association for Cellular-Connected UAV: An Imitation-Augmented Deep Reinforcement Learning Approach. IEEE Internet Things J. 2022, 9, 2843–2858. [Google Scholar] [CrossRef]
- Fontanesi, G.; Zhu, A.; Arvaneh, M.; Ahmadi, H. A Transfer Learning Approach for UAV Path Design With Connectivity Outage Constraint. IEEE Internet Things J. 2023, 10, 4998–5012. [Google Scholar] [CrossRef]
- Mellinger, D.; Kumar, V. Minimum Snap Trajectory Generation and Control for Quadrotors. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2520–2525. [Google Scholar]
- Richter, C.; Bry, A.; Roy, N. Polynomial Trajectory Planning for Aggressive Quadrotor Flight in Dense Indoor Environments. In Robotics Research; Springer: Cham, Switzerland, 2016; pp. 649–666. [Google Scholar]
- Shomin, M.; Hollis, R. Fast, Dynamic Trajectory Planning for a Dynamically Stable Mobile Robot. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 3636–3641. [Google Scholar]
- Oleynikova, H.; Burri, M.; Taylor, Z.; Nieto, J.; Siegwart, R.; Galceran, E. Continuous-Time Trajectory Optimization for Online UAV Replanning. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, Republic of Korea, 9–14 October 2016; pp. 5332–5339. [Google Scholar]
- Liu, S.; Watterson, M.; Mohta, K.; Sun, K.; Bhattacharya, S.; Taylor, C.J.; Kumar, V. Planning Dynamically Feasible Trajectories for Quadrotors Using Safe Flight Corridors in 3-D Complex Environments. IEEE Robot. Autom. Lett. 2017, 2, 1688–1695. [Google Scholar] [CrossRef]
- Gao, F.; Wu, W.; Lin, Y.; Shen, S. Online Safe Trajectory Generation for Quadrotors Using Fast Marching Method and Bernstein Basis Polynomial. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018; pp. 344–351. [Google Scholar]
- Wang, Z.; Zhou, X.; Xu, C.; Chu, J.; Gao, F. Alternating Minimization Based Trajectory Generation for Quadrotor Aggressive Flight. IEEE Robot. Autom. Lett. 2020, 5, 4836–4843. [Google Scholar] [CrossRef]
- Gao, F.; Wu, W.; Gao, W.; Shen, S. Flying on Point Clouds: Online Trajectory Generation and Autonomous Navigation for Quadrotors in Cluttered Environments. J. Field Robot. 2019, 36, 710–733. [Google Scholar] [CrossRef]
- West, D.B. Introduction to Graph Theory; Prentice Hall: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Todorović, U.; Frejo, J.R.D.; De Schutter, B. Distributed MPC for Large Freeway Networks Using Alternating Optimization. IEEE Trans. Intell. Transp. Syst. 2022, 23, 1875–1884. [Google Scholar] [CrossRef]
- Qi, C.; Ci, W.; Zhang, J.; You, X. Hybrid Beamforming for Millimeter Wave MIMO Integrated Sensing and Communications. IEEE Commun. Lett. 2022, 26, 1136–1140. [Google Scholar] [CrossRef]
- Zhuang, P.; Wu, J.; Porikli, F.; Li, C. Underwater Image Enhancement With Hyper-Laplacian Reflectance Priors. IEEE Trans. Image Process. 2022, 31, 5442–5455. [Google Scholar] [CrossRef]
- Alizadeh, F.; Goldfarb, D. Second-Order Cone Programming. Math. Program. 2003, 95, 3–51. [Google Scholar] [CrossRef]
- Sheng, M.; Zhao, C.; Liu, J.; Teng, W.; Dai, Y.; Li, J. Energy-Efficient Trajectory Planning and Resource Allocation in UAV Communication Networks under Imperfect Channel Prediction. Sci. China Inf. Sci. 2022, 65, 222301. [Google Scholar] [CrossRef]
- MOSEK: A Software Package for Solving Large-Scale Optimization Problems. Available online: https://www.mosek.com (accessed on 27 March 2023).
- The NLopt Nonlinear-Optimization Package. Available online: http://github.com/stevengj/nlopt (accessed on 4 December 2021).
- Ji, Y.; Wang, M.; Yu, Y.; Zhu, C. Curvature-Based r-Adaptive Isogeometric Analysis with Injectivity-Preserving Multi-Sided Domain Parameterization. J. Syst. Sci. Complex. 2023, 36, 53–76. [Google Scholar] [CrossRef]
- Burri, M.; Oleynikova, H.; Achtelik, M.W.; Siegwart, R. Real-Time Visual-Inertial Mapping, Re-localization and Planning Onboard MAVs in Unknown Environments. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–3 October 2015; pp. 1872–1878. [Google Scholar]
- Carabin, G.; Scalera, L. On the trajectory planning for energy efficiency in industrial robotic systems. Robotics 2020, 9, 89. [Google Scholar] [CrossRef]
Symbol | Description | |
---|---|---|
Station | M | The number of available stations, ; |
The location of the mth station, ; | ||
Radius of the mth station navigation range, ; | ||
N | The number of chosen stations, ; | |
The ith chosen navigation station, ; | ||
UAV | The ith trajectory segment with respect to the time instant, ; | |
The initial location, ; | ||
The final location, ; | ||
The location of the ith handover waypoint, ; | ||
The minimum altitude, ; | ||
The maximum altitude, ; | ||
The maximum velocity, ; | ||
The maximum acceleration, ; | ||
The time duration of the ith trajectory segment, ; | ||
n | The degree of Bézier curves, ; | |
The th control point’s location of the ith trajectory Bézier curve, ; | ||
The th control point’s location of the ith velocity Bézier curve, ; | ||
The th control point’s location of the ith acceleration Bézier curve, ; |
Parameter | Value | |
---|---|---|
Scenario 1 | l | 10,000 m |
M | 30 | |
Scenario 2 | l | 20,000 m |
M | 100 | |
Scenario 3 | l | 30,000 m |
M | 300 | |
Stations | , , | m |
, | 0 m | |
, | [500, 1500] m | |
UAV | , , , | m |
, | m | |
100 m | ||
120 m | ||
50 m/s | ||
5 m/s |
Case | Number of Station Sequences | Mission Completion Time (s) | Runtime (s) | |||||
---|---|---|---|---|---|---|---|---|
No. | Name | EM | DC | EM | DC | Rank_DC | EM | DC |
1 | M30_1 | 42 | 1 | 158.54 | 168.66 | 6 | 54.71 | 0.86 |
2 | M30_2 | 51 | 1 | 206.72 | 225.31 | 7 | 66.24 | 0.97 |
3 | M30_3 | 69 | 1 | 125.04 | 140.25 | 12 | 75.70 | 0.87 |
4 | M30_4 | 207 | 1 | 146.52 | 156.08 | 2 | 327.14 | 0.98 |
5 | M30_5 | 228 | 1 | 165.47 | 175.93 | 8 | 346.03 | 1.07 |
6 | M30_6 | 276 | 1 | 122.92 | 127.31 | 6 | 420.30 | 0.81 |
7 | M30_7 | 288 | 1 | 183.72 | 189.25 | 10 | 477.08 | 1.10 |
8 | M30_8 | 342 | 1 | 148.43 | 149.53 | 3 | 523.76 | 0.91 |
9 | M30_9 | 531 | 1 | 151.50 | 154.46 | 4 | 918.04 | 0.98 |
10 | M30_10 | 828 | 1 | 201.00 | 201.70 | 4 | 1624.50 | 1.25 |
11 | M100_1 | 679 | 1 | 252.12 | 256.97 | 4 | 1800.16 | 1.38 |
12 | M100_2 | 770 | 1 | 309.11 | 303.69 | 1 | 1800.33 | 1.41 |
13 | M100_3 | 627 | 1 | 304.34 | 304.34 | 1 | 1801.12 | 1.42 |
14 | M100_4 | 637 | 1 | 391.84 | 398.11 | 3 | 1800.39 | 1.69 |
15 | M100_5 | 654 | 1 | 370.72 | 372.74 | 3 | 1802.02 | 1.43 |
16 | M100_6 | 396 | 1 | 563.69 | 319.16 | 1 | 1800.95 | 1.41 |
17 | M100_7 | 513 | 1 | 330.95 | 332.56 | 2 | 1801.37 | 1.55 |
18 | M100_8 | 521 | 1 | 487.02 | 412.44 | 1 | 1802.10 | 1.85 |
19 | M100_9 | 461 | 1 | 604.76 | 273.54 | 1 | 1800.53 | 1.42 |
20 | M100_10 | 423 | 1 | 660.74 | 357.39 | 1 | 1802.51 | 1.86 |
21 | M300_1 | 816 | 1 | 294.95 | 267.67 | 1 | 1802.70 | 1.31 |
22 | M300_2 | 569 | 1 | 472.93 | 315.30 | 1 | 1802.66 | 1.39 |
23 | M300_3 | 381 | 1 | 619.67 | 390.37 | 1 | 1801.00 | 1.64 |
24 | M300_4 | 489 | 1 | 659.90 | 417.56 | 1 | 1802.78 | 1.89 |
25 | M300_5 | 309 | 1 | 1223.22 | 503.50 | 1 | 1804.81 | 2.02 |
26 | M300_6 | 355 | 1 | 807.23 | 535.90 | 1 | 1805.96 | 2.09 |
27 | M300_7 | 560 | 1 | 679.89 | 547.33 | 1 | 1801.31 | 2.26 |
28 | M300_8 | 310 | 1 | 908.12 | 602.05 | 1 | 1801.71 | 2.64 |
29 | M300_9 | 385 | 1 | 813.51 | 688.45 | 1 | 1801.47 | 2.54 |
30 | M300_10 | 262 | 1 | 1547.86 | 695.24 | 1 | 1801.44 | 2.68 |
Case | Number of Variables | COBYLA + MOSEK | BOBYQA + MOSEK | NEWUOA-BO- UND + MOSEK | PRAXIS + MOSEK | NELDERMEAD + MOSEK | SBPLX + MOSEK | BGD + MOSEK | AM + MOSEK | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | Name | T | P | Total | ||||||||
1 | M30_1 | 6 | 108 | 114 | 180.71 | 426.15 | 394.94 | 389.51 | 360.55 | 221.10 | 513.20 | 165.67 |
2 | M30_2 | 7 | 126 | 133 | 409.82 | 653.60 | 418.18 | 534.35 | 610.90 | 431.79 | 659.03 | 222.40 |
3 | M30_3 | 5 | 90 | 95 | 197.60 | 319.05 | 235.76 | 179.40 | 354.61 | 174.76 | 299.13 | 135.56 |
4 | M30_4 | 6 | 108 | 114 | 187.37 | 422.99 | 292.29 | 211.91 | 404.65 | 299.13 | 370.17 | 151.61 |
5 | M30_5 | 8 | 144 | 152 | 315.91 | 585.62 | 557.96 | 347.18 | 488.86 | 329.86 | 470.21 | 172.48 |
6 | M30_6 | 6 | 108 | 114 | 181.10 | 337.84 | 214.63 | 224.53 | 287.98 | 152.31 | 332.85 | 123.94 |
7 | M30_7 | 8 | 144 | 152 | 348.26 | 655.56 | 425.63 | 485.03 | 505.60 | 397.71 | 588.32 | 185.24 |
8 | M30_8 | 7 | 126 | 133 | 302.11 | 459.13 | 339.42 | 309.44 | 354.21 | 352.46 | 436.84 | 144.26 |
9 | M30_9 | 6 | 108 | 114 | 262.14 | 380.60 | 261.33 | 172.90 | 344.91 | 214.56 | 295.97 | 149.89 |
10 | M30_10 | 8 | 144 | 152 | 320.57 | 631.50 | 428.32 | 457.60 | 599.41 | 362.97 | 618.42 | 196.11 |
11 | M100_1 | 8 | 144 | 152 | 464.76 | 935.87 | 884.65 | 773.75 | 761.79 | 553.95 | 898.22 | 253.65 |
12 | M100_2 | 10 | 180 | 190 | 765.06 | 1163.71 | 784.37 | 999.21 | 1053.56 | 919.30 | 1057.17 | 299.14 |
13 | M100_3 | 10 | 180 | 190 | 811.34 | 1167.38 | 950.00 | 998.68 | 1043.37 | 908.02 | 1101.79 | 300.50 |
14 | M100_4 | 13 | 234 | 247 | 938.86 | 1561.07 | 1264.71 | 1403.64 | 1590.94 | 1484.90 | 1373.60 | 394.54 |
15 | M100_5 | 11 | 198 | 209 | 798.25 | 1402.80 | 1070.93 | 1018.47 | 1284.13 | 1070.69 | 1098.14 | 368.47 |
16 | M100_6 | 12 | 216 | 228 | 653.96 | 1170.53 | 752.10 | 958.04 | 1185.31 | 1054.76 | 958.08 | 314.99 |
17 | M100_7 | 13 | 234 | 247 | 740.89 | 1306.02 | 1360.80 | 1150.71 | 1218.17 | 1059.64 | 1124.03 | 327.98 |
18 | M100_8 | 16 | 288 | 304 | 1059.50 | 1695.87 | 1448.79 | 1569.56 | 1785.90 | 1449.00 | 1416.82 | 408.15 |
19 | M100_9 | 10 | 180 | 190 | 649.71 | 983.17 | 878.66 | 946.25 | 878.25 | 784.52 | 1002.30 | 269.49 |
20 | M100_10 | 14 | 252 | 266 | 672.02 | 1405.67 | 1235.69 | 1347.41 | 1365.03 | 1293.45 | 1263.75 | 352.58 |
21 | M300_1 | 7 | 126 | 133 | 525.00 | 876.17 | 574.49 | 318.79 | 784.77 | 592.28 | 390.84 | 262.49 |
22 | M300_2 | 9 | 162 | 171 | 769.15 | 1081.12 | 1260.70 | 834.04 | 895.95 | 908.78 | 982.40 | 310.98 |
23 | M300_3 | 11 | 198 | 209 | 808.85 | 1463.94 | 1230.12 | 823.63 | 1427.72 | 1255.92 | 822.98 | 385.72 |
24 | M300_4 | 13 | 234 | 247 | 848.05 | 1688.57 | 1496.50 | 1599.49 | 1596.18 | 1449.61 | 1597.61 | 412.89 |
25 | M300_5 | 15 | 270 | 285 | 1260.66 | 1968.58 | 1481.72 | 1658.34 | 2054.45 | 1725.70 | 1465.91 | 499.14 |
26 | M300_6 | 17 | 306 | 323 | 1282.66 | 2206.58 | 1525.61 | 1773.88 | 2376.84 | 2041.90 | 1414.90 | 531.25 |
27 | M300_7 | 19 | 342 | 361 | 1331.53 | 2381.23 | 2638.53 | 2153.83 | 2505.64 | 2237.46 | 1920.59 | 543.26 |
28 | M300_8 | 20 | 360 | 380 | 1756.99 | 2607.25 | 2907.24 | 2477.68 | 2758.98 | 2451.52 | 2207.49 | 598.70 |
29 | M300_9 | 22 | 396 | 418 | 1855.98 | 2667.60 | 2760.89 | 2538.78 | 2802.32 | 2530.35 | 2172.03 | 684.11 |
30 | M300_10 | 23 | 414 | 437 | 1837.07 | 3113.59 | 3370.89 | 2701.31 | 3264.96 | 2996.73 | 1941.38 | 693.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, M.; Dou, L.; Xin, B. 3D Smooth Trajectory Planning for UAVs under Navigation Relayed by Multiple Stations Using Bézier Curves. Electronics 2023, 12, 2358. https://doi.org/10.3390/electronics12112358
Qi M, Dou L, Xin B. 3D Smooth Trajectory Planning for UAVs under Navigation Relayed by Multiple Stations Using Bézier Curves. Electronics. 2023; 12(11):2358. https://doi.org/10.3390/electronics12112358
Chicago/Turabian StyleQi, Mingfeng, Lihua Dou, and Bin Xin. 2023. "3D Smooth Trajectory Planning for UAVs under Navigation Relayed by Multiple Stations Using Bézier Curves" Electronics 12, no. 11: 2358. https://doi.org/10.3390/electronics12112358
APA StyleQi, M., Dou, L., & Xin, B. (2023). 3D Smooth Trajectory Planning for UAVs under Navigation Relayed by Multiple Stations Using Bézier Curves. Electronics, 12(11), 2358. https://doi.org/10.3390/electronics12112358