A Study of Mutual Coupling Suppression between Two Closely Spaced Planar Monopole Antenna Elements for 5G New Radio Massive MIMO System Applications
Abstract
:1. Introduction
2. Case Study: Closely Spaced mmWave MIMO Systems
2.1. Design 1
2.2. Design 2
3. Mutual Coupling Suppression using Frequency-Selective Surface
3.1. Frequency-Selective Surface: Unit Cell
3.2. Frequency-Selective Surface for Mutual Coupling Reduction
3.3. FSS Wall and Metallic Strip
3.4. Ground Slot
4. Working Principle
5. Experimental Validation and Benchmarking
5.1. Experimental Validation of Design 1
5.2. Experimental Validation of Design 2
6. Benchmarking
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oestges, C.; Guillaud, M.; Debbah, M. Multi-polarized MIMO communications: Channel model, mutual information and array optimization. In Proceedings of the 2007 IEEE Wireless Communications and Networking Conference, Hong Kong, China, 11–15 March 2007; pp. 1057–1061. [Google Scholar]
- Khan, M.F.; Pesch, D. On Performance of multi-user Massive MIMO for 5G and beyond. In Proceedings of the IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–5. [Google Scholar]
- Zhang, J.; Chen, S.; Lin, Y.; Zheng, J.; Ai, B.; Hanzo, L. Cell-free massive MIMO: A new next-generation paradigm. IEEE Access 2019, 7, 99878–99888. [Google Scholar] [CrossRef]
- Zhou, M.; Li, J.; Xie, M.; Zhang, C.; Yuan, J. Average Sum Rate of D2D Underlaid Multigroup Multicast Cell-Free Massive MIMO With Multi-Antenna Users. IEEE Wirel. Commun. Lett. 2023, 12, 60–64. [Google Scholar] [CrossRef]
- Pei, T.; Zhu, L.; Wang, J.; Wu, W. A Low-Profile Decoupling Structure for Mutual Coupling Suppression in MIMO Patch Antenna. IEEE Trans. Antennas Propag. 2021, 69, 6145–6153. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Ghosh, C.K. Deployment of Frequency Selective Surface (FSS) for Reduction of Mutual Coupling and Cross-Polarization in MIMO Antennas. In Proceedings of the International Interdisciplinary Conference on Mathematics, Engineering and Science (MESIICON), Durgapur, India, 11–12 November 2022; pp. 1–5. [Google Scholar]
- Benny, S.; Sahoo, S. Mutual Coupling Reduction between elements of Dual-polarization Phased Array Antenna for Weather Radars. In Proceedings of the 24th International Microwave and Radar Conference (MIKON), Gdansk, Poland, 12–14 September 2022; pp. 1–6. [Google Scholar]
- Fadehan, G.A.; Olasoji, Y.O.; Adedeji, K.B. Mutual Coupling Effect and Reduction Method with Modified Electromagnetic Band Gap in UWB MIMO Antenna. Appl. Sci. 2022, 12, 12358. [Google Scholar] [CrossRef]
- Dabas, T.; Gangwar, D.; Kanaujia, B.K.; Gautam, A.K. Mutual coupling reduction between elements of UWB MIMO antenna using small size uniplanar EBG exhibiting multiple stop bands. AEU Int. J. Electron. Commun. 2018, 93, 32–38. [Google Scholar] [CrossRef]
- Babu, K.V.; Anuradha, B. Design of UWB MIMO antenna to reduce the mutual coupling using defected ground structure. Wirel. Pers. Comm. 2021, 118, 3469–3484. [Google Scholar] [CrossRef]
- Dash, J.C.; Sarkar, D. Microstrip Patch Antenna System with Enhanced Inter-Port Isolation for Full-Duplex/MIMO Applications. IEEE Access 2021, 9, 156222–156228. [Google Scholar] [CrossRef]
- Saurabh, A.K.; Meshram, M.K. Compact sub-6 GHz 5G-multiple-input-multiple-output antenna system with enhanced isolation. Int. J. RF Micro. Comp. Aided Eng. 2020, 30, e22246. [Google Scholar] [CrossRef]
- Diman, A.A. Efficient SIW-Feed Network Suppressing Mutual Coupling of Slot Antenna Array. IEEE Trans. Antennas Propag. 2021, 69, 6058–6063. [Google Scholar] [CrossRef]
- Karmani, F.; Rezaei, P.; Ali Amn-e-Elahi, A.; Meiguni, J.S. A compact and wideband array antenna with efficient hybrid feed network. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22393. [Google Scholar]
- Ghannad, A.A.; Khalily, M.; Xiao, P.; Tafazolli, R.; Kishk, A.A. Enhanced matching and vialess decoupling of nearby patch antennas for MIMO system. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1066–1070. [Google Scholar] [CrossRef]
- Li, M.; Wang, M.; Jiang, L.; Yeung, L.K. Decoupling of Antennas with Adjacent Frequency Bands Using Cascaded Decoupling Network. IEEE Trans. Antennas Propag. 2021, 69, 1173–1178. [Google Scholar] [CrossRef]
- Kedze, K.E.; Zhou, W.; Javanbakht, N.; Xiao, G.; Shaker, J.; Amaya, R.E. Implementing Complementary Split Ring Resonators for Mutual Coupling Suppression in Dual Differentially-Fed Microstrip Patch Array Antenna. In Proceedings of the 2022 IEEE International Symposium on Phased Array Systems & Technology (PAST), Waltham, MA, USA, 11–14 October 2022. [Google Scholar]
- Selvaraju, R.; Jamaluddin, M.H.; Kamarudin, M.R.; Nasir, J.; Dahri, M.H. Mutual Coupling Reduction and Pattern Error Correction in a 5G Beamforming Linear Array Using CSRR. IEEE Access 2018, 6, 65922–65934. [Google Scholar] [CrossRef]
- Zou, X.-J.; Wang, G.-M.; Kang, G.-Q.; Song, W.; Tan, M.; Xu, X.-G.; Zhu, H. Wideband coupling suppression with neutralization-line-incorporated decoupling network in MIMO arrays. AEU Int. J. Electron. Commun. 2023, 167, 154688. [Google Scholar] [CrossRef]
- Wu, T.; Wang, M.-J.; Chen, J. Decoupling of MIMO antenna array based on half-mode substrate integrated waveguide with neutralization lines. AEU Int. J. Electron. Commun. 2022, 157, 154416. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Salvucci, A.; Polli, G.; Virdee, B.S.; See, C.H.; Abd-Alhameed, R.; Limiti, E. Mutual coupling reduction using metamaterial supersubstrate for high performance & densely packed planar phased arrays. In Proceedings of the 2018 22nd International Microwave and Radar Conference (MIKON), Poznan, Poland, 14–17 May 2018. [Google Scholar]
- Alibakhshikenari, M.; Khalily, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, R.A.; Limiti, E. Mutual Coupling Suppression Between Two Closely Placed Microstrip Patches Using EM-Bandgap Metamaterial Fractal Loading. IEEE Access 2019, 7, 23606–23614. [Google Scholar] [CrossRef]
- Kumar, P.; Ali, T.; Pai, M.M.M. Electromagnetic Metamaterials: A New Paradigm of Antenna Design. IEEE Access 2021, 9, 18722–18751. [Google Scholar] [CrossRef]
- Kumar, A.; Ansari, A.Q.; Kanaujia, B.K.; Kishor, J.; Matekovits, L. A review on different techniques of mutual coupling reduction between elements of any MIMO antenna. Part 1: DGSs and parasitic structures. Radio Sci. 2021, 56, e2020RS007122. [Google Scholar] [CrossRef]
- Ikram, M.; Sharawi, M.S.; Shamim, A.; Sebak, A. A multiband dual-standard MIMO antenna system based on monopoles (4G) and connected slots (5G) for future smart phones. Micro. Optic. Technol. Lett. 2018, 60, 1468–1476. [Google Scholar] [CrossRef]
- Faraz, F.; Li, Q.; Chen, X.; Abdullah, M.; Zhang, S.; Zhang, A. Mutual Coupling Reduction for Linearly Arranged MIMO Antenna. In Proceedings of the Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Taiyuan, China, 18–21 July 2019; pp. 1–3. [Google Scholar]
- Karimian, R.; Kesavan, A.; Nedil, M.; Denidni, T.A. Low-mutual-coupling 60-GHz MIMO antenna system with frequency selective Surface Wall. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 373–376. [Google Scholar] [CrossRef]
- Zhen, T.; Zhang, Z.; Wu, X. Design of millimeter wave array antenna decoupling construction based on metasurface. In Proceedings of the 2021 International Applied Computational Electromagnetics Society (ACES-China) Symposium, Chengdu, China, 28–31 July 2021; pp. 1–2. [Google Scholar]
- Pawar, S.; Mastromatteo, S.; Yakovlev, A.B.; Bernety, H.M.; Skinner, H.G.; Suh, S.Y.; Alù, A. Elliptical Metasurface Cloaks for Decoupling and Cloaking of Microstrip Monopole Antennas at 28 GHz and 39 GHz for 5G Wireless Applications. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020; pp. 805–806. [Google Scholar]
- Thi, D.; Phuong, N.T.B.; Son, P.D.; Van Yem, V. Improving Characteristics of 28/38 GHz MIMO Antenna for 5G Applications by Using Double-Side EBG Structure. J. Commun. 2019, 14, 1–8. [Google Scholar]
Parameters | Quantities (Millimeters) |
---|---|
P | 4.24 |
W | 0.1 |
L | 0.45 |
Ri | 0.72 |
Ro | 1.85 |
Design | Mutual Coupling Structures | Operating Frequency (GHz) | Edge-to-Edge Spacing | Max. Mutual Coupling Suppression |S21| (dB) | Total Size of the Antenna System |
---|---|---|---|---|---|
[8] | EBG | 3.1 to 13.5 | ≈1.01λ | 23 | ≈0.87 λ × 1.55 λ × 0.0008 λ |
[10] | DGS | 2 to 10 | ≈0.1λ | 30 | ≈1.2 λ × 0.7λ × 0.032 λ |
[16] | Cascaded decoupling network | 2.3 to 2.4/2.4 to 2.483 | ≈0.18λ | 20 | ≈0.82 λ × 0.82 λ × 0.25 λ |
[19] | Neutralization line and decoupling network | 4.68 to 5.5 | ≈0.083λ | 20 | Not available |
[22] | EBG and metamaterial wall | 8.7–11.7, 11.9–14.6, 15.6–17.1, 22–26, and 29–34.2 | ≈0.65λ | 37, 21, 20, 20, and 31 | ≈0.96 λ × 0.96 λ × 0.18 λ |
[27] | FSS wall | 57 to 63 | ≈0.5λ | 30 | Not available |
[28] | Metasurface | 23.8 to 25.2 | ≈0.3λ | 25 | ≈5.65 λ × 1.7 λ × 0.28 λ |
[29] | Metasurface | 28 and 39 | ≈0.23λ | 30 and 48 | ≈0.7 λ × 0.63 λ × 0.013 λ |
[30] | EBG | 28 and 39 | ≈0.5λ | 30 and 25 | ≈1.43 λ × 0.79 λ × 0.074 λ |
This work (Design 1) | FSS, metallic strip, and ground slot | 24 to 27 | ≈0.107λ | 22.5 | ≈2.57λ × 2.57λ × 1.43λ |
This work (Design 2) | FSS, metallic strip, and ground slot | 24 to 27 | ≈0.107λ | 22.5 | ≈2.57λ × 2.57λ × 1.43λ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, R.S.; Koziel, S.; Leifsson, L.; Szczepanski, S. A Study of Mutual Coupling Suppression between Two Closely Spaced Planar Monopole Antenna Elements for 5G New Radio Massive MIMO System Applications. Electronics 2023, 12, 2630. https://doi.org/10.3390/electronics12122630
Aziz RS, Koziel S, Leifsson L, Szczepanski S. A Study of Mutual Coupling Suppression between Two Closely Spaced Planar Monopole Antenna Elements for 5G New Radio Massive MIMO System Applications. Electronics. 2023; 12(12):2630. https://doi.org/10.3390/electronics12122630
Chicago/Turabian StyleAziz, Rao Shahid, Slawomir Koziel, Leifur Leifsson, and Stanislaw Szczepanski. 2023. "A Study of Mutual Coupling Suppression between Two Closely Spaced Planar Monopole Antenna Elements for 5G New Radio Massive MIMO System Applications" Electronics 12, no. 12: 2630. https://doi.org/10.3390/electronics12122630
APA StyleAziz, R. S., Koziel, S., Leifsson, L., & Szczepanski, S. (2023). A Study of Mutual Coupling Suppression between Two Closely Spaced Planar Monopole Antenna Elements for 5G New Radio Massive MIMO System Applications. Electronics, 12(12), 2630. https://doi.org/10.3390/electronics12122630