Microwave Common-Frequency Absorption/Transmission Mode Conversion Based on Active Components
Abstract
:1. Introduction
2. Design and Analysis
2.1. Design Principle
2.2. Equivalent Circuit Analysis
2.3. Surface Current Distribution
3. Numerical Validation and Analysis
Simulation Results
4. Experiment Verification
4.1. Sample Fabrication and Experiment
4.2. Sample Measurement Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Munk, B.A. Frequency Selective Surfaces: Theory and Design; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Mias, C. Varactor tunable frequency selective absorber. Electron. Lett. 2003, 39, 1060–1062. [Google Scholar] [CrossRef]
- Xu, W.R.; Sonkusale, S. Microwave diode switchable metamaterial reflector/absorber. Appl. Phys. Lett. 2013, 103, 031902. [Google Scholar] [CrossRef]
- Tennant, A.; Chambers, B. A single-layer tunable microwave absorber using an active FSS. IEEE Microwave. Wirel. Compon. Lett. 2004, 14, 46–47. [Google Scholar] [CrossRef] [Green Version]
- Kontt, E.F.; Schaeffer, J.F.; Tuley, M.T. Radar Cross Section: Its Prediction Measurement and Reduction; Artech House: Boston, MA, USA, 1985. [Google Scholar]
- Li, F.F.; Fang, W.; Chen, P.; Poo, Y.; Wu, R.X. Transmission and radar cross-section reduction by combining binary coding metasurface and frequency selective surface. Opt. Express 2018, 26, 33878. [Google Scholar] [CrossRef]
- Xu, B.; Gu, C.; Li, Z.; Liu, L.; Niu, Z. A novel absorber with tunable bandwidth based on graphene. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 822–825. [Google Scholar]
- Torabi, E.S.; Fallahi, A.; Yahaghi, A. Evolutionary optimization of graphene-metal metasurfaces for tunable broadband terahertz absorption. IEEE Trans. Antennas Propag. 2017, 65, 1464–1467. [Google Scholar] [CrossRef] [Green Version]
- Ho, I.C.; Pan, C.L.; Hsieh, C.F.; Pan, R.P. Liquid-crystal-based terahertz tunable Solc filter. Opt. Lett. 2006, 88, 910. [Google Scholar] [CrossRef]
- Hu, W.; Dickie, R.; Cahill, R.; Gamble, H.; Ismail, Y.; Fusco, V.; Linton, D.; Grant, N.; Rea, S. Liquid crystal tunable mm wave frequency selective surface. IEEE Microw. Wirel. Components Lett. 2007, 17, 667–669. [Google Scholar] [CrossRef]
- Deng, G.; Xia, T.; Jing, S.; Yang, J.; Lu, H.; Yin, Z. A tunable metamaterial absorber based on liquid crystal intended for F frequency band. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2062–2065. [Google Scholar] [CrossRef]
- Mias, C. Varactor-tunable frequency selective surface with resistive-lumped-element biasing grids. IEEE Microw. Wirel. Components Lett. 2005, 15, 570–572. [Google Scholar] [CrossRef]
- Li, J.; Jiang, J.; He, Y.; Xu, W.; Chen, M.; Miao, L.; Bie, S. Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 774–777. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, K.; Zhu, B.; Zhao, J.; Feng, Y.; Li, Y. Ultra-Wideband Microwave Absorption by Design and Optimization of Metasurface Salisbury Screen. IEEE Access 2018, 6, 26843–26853. [Google Scholar] [CrossRef]
- Ji, C.; Huang, C.; Zhang, X.; Yang, J.; Song, J.; Luo, X. Broadband low-scattering metasurface using a combination of phase cancellation and absorption mechanisms. Opt. Express 2019, 27, 23368. [Google Scholar] [CrossRef]
- Hoa, N.T.Q.; Tuan, T.S.; Hieu, L.T.; Giang, B.L. Facile design of an ultra-thin broadband metamaterial absorber for C-band applications. Sci. Rep. 2019, 9, 468. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Feng, Y.; Zhao, J.; Huang, C.; Wang, Z.; Jiang, T. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber. Opt. Express 2010, 18, 23196–23203. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Qu, S.; Chen, B.; Bai, X.; Ng, K.; Chan, C.H. Terahertz Metasurfaces for Absorber or Reflectarray Applications. IEEE Trans. Antennas Propag. 2017, 65, 234–241. [Google Scholar] [CrossRef]
- Yoo, M.; Lim, S. Active metasurface for controlling reflection and absorption properties. Appl. Phys. Express 2014, 7, 112204. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, Z.; Fan, Y.; Wu, C.; Cheng, K.; Qi, L.; Zhang, B.; Zhang, X. Ultrathin dual-functional metasurface with transmission and absorption characteristics. Opt. Mater. Express 2018, 8, 875. [Google Scholar] [CrossRef]
- Pang, Y.; Li, Y.; Qu, B.; Yan, M.; Wang, J.; Qu, S.; Xu, Z. Wideband RCS reduction metasurface with a transmission window. IEEE Trans. Antennas Propag. 2020, 68, 7079–7087. [Google Scholar] [CrossRef]
- Zhao, H.Z.; Zhou, Y.J. A Tunable Absorber with Switched Absorption/Transmission Property. In Proceedings of the 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Xuzhou, China, 21–24 July 2018; pp. 1–3. [Google Scholar]
- Phon, R.; Ghosh, S.; Lim, S. Novel multifunctional reconfigurable active frequency selective surface. IEEE Trans. Antennas Propag. 2018, 67, 1709–1718. [Google Scholar] [CrossRef]
- Phon, R.; Ghosh, S.; Lim, S. Active frequency selective surface to switch between absorption and transmission band with additional frequency tuning capability. IEEE Trans. Antennas Propag. 2019, 67, 6059–6067. [Google Scholar] [CrossRef]
- Yu, Y.; Xiao, F.; He, C.; Jin, R.; Zhu, W. Double-arrow metasurface for dual-band and dual-mode polarization conversion. Opt. Express 2020, 28, 11797–11805. [Google Scholar] [CrossRef]
- Pan, Y.; Lan, F.; Zhang, Y.; Zeng, H.; Wang, L.; He, T.S.G.; Yang, Z. Dual-band multifunctional coding metasurface with a mingled anisotropic aperture for polarized manipulation in full space. Photonics Res. 2022, 10, 416–425. [Google Scholar] [CrossRef]
- Silalahi, H.; Chiang, W.; Shih, Y.; Wei, W.; Su, J.; Huang, C. Folding metamaterials with extremely strong electromagnetic resonance. Photonics Res. 2022, 10, 2215–2222. [Google Scholar] [CrossRef]
- Oman, Z.; Ghobadi, A.; Khalichi, B.; Ozbay, E. Fano resonance in a dolomite phase-change multilayer design for dynamically tunable omnidirectional monochromatic thermal emission. Opt. Lett. 2022, 47, 5781–5784. [Google Scholar] [CrossRef]
- Zhao, F.; Li, Z.; Li, S.; Dai, X.; Zhou, Y.; Liao, X.; Cao, J.C.; Liang, G.; Shang, Z.; Zhang, Z.; et al. Terahertz metalens of hyper-dispersion. Photonics Res. 2022, 10, 886–895. [Google Scholar] [CrossRef]
- Liu, S.; Xu, F.; Zhan, J.; Qiang, J.; Xie, Q.; Yang, L.; Deng, S.; Zhang, Y. Terahertz liquid crystal programmable metasurface based on resonance switching. Opt. Lett. 2022, 47, 1891–1894. [Google Scholar] [CrossRef]
- Silalahi, H.; Shih, Y.; Lin, S.; Chen, Y.; Wei, W.; Chao, P.; Huang, C. Electrically controllable terahertz metamaterials with large tunabilities and low operating electric fields using electrowetting-on-dielectric cells. Opt. Lett. 2021, 46, 5962–5965. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Chen, Y.; Xiao, S. Design of Metasurface with Low-Frequency Transmission and High-Frequency Absorption Characteristics. In Proceedings of the 2020 IEEE International Conference on Computational Electromagnetics (ICCEM), Singapore, 24–26 August 2020; pp. 226–227. [Google Scholar] [CrossRef]
- Kaynak, A.; Unsworth, J.; Clout, R.; Mohan, A.S.; Beard, G.E. A study of microwave transmission, reflection, absorption, and shielding effectiveness of conducting polypyrrole films. J. Appl. Polym. 2010, 54, 269–278. [Google Scholar] [CrossRef]
- Azad, A.K.; Taylor, A.J.; Smirnova, E.I.; Ohara, J.F. Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators. Appl. Phys. Lett. 2008, 2, 011119. [Google Scholar] [CrossRef]
- Fu, L.; Schweizer, H.; Guo, H.; Liu, N.; Giessen, H. Synthesis of transmission line models for metamaterial slabs at optical frequencies. Phys. Rev. 2008, 78, 115110. [Google Scholar] [CrossRef]
- Caloz, C. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach; John Wiley and Sons: New York, NY, USA, 2005. [Google Scholar]
- Frickey, D.A. Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances. IEEE Trans. Microw. Theory Tech. 1994, 42, 205–211. [Google Scholar] [CrossRef]
- Zhao, J.; Cheng, Q.; Chen, J.; Qi, M.Q.; Jiang, W.X.; Cui, T.J. A tunable metamaterial absorber using varactor diodes. New J. Phys. 2013, 15, 043049. [Google Scholar] [CrossRef]
- Shang, Y.; Shen, Z.; Xiao, S. On the design of single-layer circuit analog absorber using double-square-loop array. IEEE Trans. Antennas Propag. 2013, 61, 6022–6029. [Google Scholar] [CrossRef]
Variable Symbol | ||||
Variable Value | 7.65 ohm | 3.42 nH | 0.051 pF | 35.96 ohm |
Variable Symbol | ||||
Variable Value | 8.41 nH | 0.093 pF | 2.81 ohm | 1.35 pF |
Variable Symbol | ||||
Variable Value | 0.26 nH | 9.29 ohm | 19.12 ohm | 0.25 nH |
Variable Symbol | ||||
Variable Value | 11.17 ohm | 49.86 nH | 2.16 pF | 41.61 ohm |
Variable Symbol | ||||
Variable Value | 11.3 nH | 0.036 pF | 1.87 ohm | 0.147 nH |
Variable Symbol | ||||
Variable Value | 0.37 pH | 0.532 ohm | 0.46 pF | 0.81 nH |
AFSS Structure | Working Mode | Biasing Network | Polarization | |||
---|---|---|---|---|---|---|
Transmission Mode | Absorption Mode | |||||
Insertion Loss (dB) | Center Frequency (GHz) | Absorption Rate (%) | Center Frequency (GHz) | |||
Ref. [24] | 1.2 | 8.61 and 11.33 | 92 | 10 | Surface | Single |
Ref. [25] | 1.96 | 4 | 90 | 5.2 | Drilling | Double |
Ref. [33] | 0.97 | 0–0.8 | 90 | 8–18 | Drilling | Double |
This work | 0.85 | 11.4 GHz | 92 | 11.4 GHz | Surface | Single |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Wang, W.; Han, C.-Z.; Ding, T. Microwave Common-Frequency Absorption/Transmission Mode Conversion Based on Active Components. Electronics 2023, 12, 2876. https://doi.org/10.3390/electronics12132876
Luo Y, Wang W, Han C-Z, Ding T. Microwave Common-Frequency Absorption/Transmission Mode Conversion Based on Active Components. Electronics. 2023; 12(13):2876. https://doi.org/10.3390/electronics12132876
Chicago/Turabian StyleLuo, Yisen, Wenning Wang, Chong-Zhi Han, and Tongyu Ding. 2023. "Microwave Common-Frequency Absorption/Transmission Mode Conversion Based on Active Components" Electronics 12, no. 13: 2876. https://doi.org/10.3390/electronics12132876
APA StyleLuo, Y., Wang, W., Han, C. -Z., & Ding, T. (2023). Microwave Common-Frequency Absorption/Transmission Mode Conversion Based on Active Components. Electronics, 12(13), 2876. https://doi.org/10.3390/electronics12132876