Memristors in Cellular-Automata-Based Computing: A Review
Abstract
:1. Introduction
2. Theoretical Background
2.1. Cellular Automata: Theory and Important Definitions
2.2. Memristor Devices and Models
2.2.1. Performance Characteristics and Functionality
2.2.2. Device Models for Simulation
- A threshold-type behavioral memristor model
- Generalized Boundary Condition Model
- Stanford-PKU ReRAM Model
3. Memristive Cellular Automata (MCA)
3.1. Theoretical Approach on MCA
3.2. Circuit Implementation of MCA
3.2.1. 1-D Memristive Cellular Automata
3.2.2. 2-D Memristive Cellular Automata
- Epilepsy modeling using MCA
- The aggregated input signal the cell receives from all its neighbors exceeds a certain activation threshold.
- The cell receives an external, random excitation signal , which also exceeds a threshold (not necessarily of the same value as in case (1))
- Game of Life
4. Memristor Cellular Automata for Image Processing Applications
- if ,
- if ,
- with probability
- if ,
- else,
5. Memristive Probabilistic Cellular Automata
6. Memristive Excitable Cellular Automata
6.1. Memristive Automaton
- , where a resting cell will be excited when .
- , where a resting cell will be excited when or .
6.2. Experimental Procedures
- , where all links are initialized to the conductive state, .
- , where all links are initialized to the non-conductive state, .
6.3. Distinguished Observations
6.3.1. Oscillating Localizations
6.3.2. Dynamics of Excitation on Interfaces
6.3.3. Building Conductive Pathways
7. Concluding Remarks and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bardeen, J.; Brattain, W.H. The transistor, a semi-conductor triode. Phys. Rev. 1948, 74, 230. [Google Scholar] [CrossRef]
- Shalf, J. The future of computing beyond Moore’s law. Philos. Trans. R. Soc. A 2020, 378, 20190061. [Google Scholar] [CrossRef]
- Esser, S.K.; Merolla, P.A.; Arthur, J.V.; Cassidy, A.S.; Appuswamy, R.; Andreopoulos, A.; Berg, D.J.; McKinstry, J.L.; Melano, T.; Barch, D.R.; et al. Convolutional networks for fast, energy-efficient neuromorphic computing. Proc. Natl. Acad. Sci. USA 2016, 113, 11441–11446. [Google Scholar] [CrossRef]
- Schuman, C.D.; Potok, T.E.; Patton, R.M.; Birdwell, J.D.; Dean, M.E.; Rose, G.S.; Plank, J.S. A survey of neuromorphic computing and neural networks in hardware. arXiv 2017, arXiv:1705.06963. [Google Scholar]
- van De Burgt, Y.; Melianas, A.; Keene, S.T.; Malliaras, G.; Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 2018, 1, 386–397. [Google Scholar] [CrossRef]
- Torrejon, J.; Riou, M.; Araujo, F.A.; Tsunegi, S.; Khalsa, G.; Querlioz, D.; Bortolotti, P.; Cros, V.; Yakushiji, K.; Fukushima, A.; et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 2017, 547, 428–431. [Google Scholar] [CrossRef] [PubMed]
- Burr, G.W.; Shelby, R.M.; Sebastian, A.; Kim, S.; Kim, S.; Sidler, S.; Virwani, K.; Ishii, M.; Narayanan, P.; Fumarola, A.; et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2017, 2, 89–124. [Google Scholar] [CrossRef]
- Kumar, S.; Williams, R.S.; Wang, Z. Third-order nanocircuit elements for neuromorphic engineering. Nature 2020, 585, 518–523. [Google Scholar] [CrossRef]
- Dutta, S.; Khanna, A.; Assoa, A.; Paik, H.; Schlom, D.G.; Toroczkai, Z.; Raychowdhury, A.; Datta, S. An Ising Hamiltonian solver based on coupled stochastic phase-transition nano-oscillators. Nat. Electron. 2021, 4, 502–512. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Wang, D.; Zhang, W.; Chen, X.; Dong, D.; Wang, S.; Zhang, X.; Lin, P.; Gallicchio, C.; et al. Echo state graph neural networks with analogue random resistive memory arrays. Nat. Mach. Intell. 2023, 5, 104–113. [Google Scholar] [CrossRef]
- Gibson, M.J.; Keedwell, E.C.; Savić, D.A. An investigation of the efficient implementation of cellular automata on multi-core CPU and GPU hardware. J. Parallel Distrib. Comput. 2015, 77, 11–25. [Google Scholar] [CrossRef]
- Bakhteri, R.; Cheng, J.; Semmelhack, A. Design and Implementation of Cellular Automata on FPGA for Hardware Acceleration. Procedia Comput. Sci. 2020, 171, 1999–2007. [Google Scholar] [CrossRef]
- Halbach, M.; Hoffmann, R. Implementing cellular automata in FPGA logic. In Proceedings of the 18th International Parallel and Distributed Processing Symposium, Santa Fe, NM, USA, 26–30 April 2004; IEEE: Pitcataway, NJ, USA, 2004; p. 258. [Google Scholar]
- Moore, J.H.; Hahn, L.W. Cellular automata and genetic algorithms for parallel problem solving in human genetics. In Proceedings of the International Conference on Parallel Problem Solving from Nature; Springer: Berlin/Heidelberg, Germany, 2002; pp. 821–830. [Google Scholar]
- Santé, I.; García, A.M.; Miranda, D.; Crecente, R. Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landsc. Urban Plan. 2010, 96, 108–122. [Google Scholar] [CrossRef]
- Margolus, N.; Toffoli, T. Cellular automata machines. In Lattice Gas Methods for Partial Differential Equations; CRC Press: Boca Raton, FL, USA, 2019; pp. 219–250. [Google Scholar]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Fox, G.C.; Williams, R.D.; Messina, P.C. Parallel Computing Works! Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Scott, L.R.; Clark, T.; Bagheri, B. Scientific Parallel Computing; Princeton University Press: Princeton, NJ, USA, 2021. [Google Scholar]
- Ulam, S.M. Scottish Book: A LASL Monograph. In Collection of Problems of Interest in Late 1930’s; Los Alamos National Lab.: Los Alamos, NM, USA, 1977. [Google Scholar] [CrossRef]
- Von Neumann, J. The General and Logical Theory of Automata; John Wiley and Sons: Hoboken, NJ, USA, 1963; Volume 5. [Google Scholar]
- Neumann, J.; Burks, A.W. Theory of Self-Reproducing Automata; University of Illinois Press Urbana: Champaign, IL, USA, 1966; Volume 1102024. [Google Scholar]
- Wolfram, S. Mathematica: A System for Doing Mathematics by Computer; Addison Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1991. [Google Scholar]
- Wolfram, S. A New Kind of Science; Wolfram Media: Champaign, IL, USA, 2002; Volume 5. [Google Scholar]
- Wolfram, S. Cellular automata as models of complexity. Nature 1984, 311, 419–424. [Google Scholar] [CrossRef]
- Kier, L.B.; Seybold, P.G.; Cheng, C.K. Modeling Chemical Systems Using Cellular Automata; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Kansal, A.R.; Torquato, S.; Harsh Iv, G.; Chiocca, E.; Deisboeck, T. Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J. Theor. Biol. 2000, 203, 367–382. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Sun, Z. A dynamic estimation method for aircraft emergency evacuation based on cellular automata. Adv. Mech. Eng. 2019, 11, 1687814019825702. [Google Scholar] [CrossRef]
- Giitsidis, T.; Dourvas, N.I.; Sirakoulis, G.C. Parallel implementation of aircraft disembarking and emergency evacuation based on cellular automata. Int. J. High Perform. Comput. Appl. 2017, 31, 134–151. [Google Scholar] [CrossRef]
- Spartalis, E.; Georgoudas, I.G.; Sirakoulis, G.C. Ca crowd modeling for a retirement house evacuation with guidance. In Proceedings of the International Conference on Cellular Automata, Krakow, Poland, 22–25 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 481–491. [Google Scholar]
- Georgoudas, I.G.; Kyriakos, P.; Sirakoulis, G.C.; Andreadis, I.T. An FPGA implemented cellular automaton crowd evacuation model inspired by the electrostatic-induced potential fields. Microprocess. Microsyst. 2010, 34, 285–300. [Google Scholar] [CrossRef]
- Koumis, I.; Georgoudas, I.G.; Trunfio, G.A.; Wąs, J.; Sirakoulis, G.C. A GPU implemented 3f cellular automata-based model for a 2D evacuation simulation pattern. In Proceedings of the 2017 25th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), St. Petersburg, Russia, 6–8 March 2017; IEEE: Pitcataway, NJ, USA, 2017; pp. 497–504. [Google Scholar]
- Tourtounis, D.; Mitianoudis, N.; Sirakoulis, G.C. Salt-n-pepper noise filtering using cellular automata. arXiv 2017, arXiv:1708.05019. [Google Scholar]
- Rosin, P.L. Image processing using 3-state cellular automata. Comput. Vis. Image Underst. 2010, 114, 790–802. [Google Scholar] [CrossRef]
- Vezhnevets, V.; Konouchine, V. GrowCut: Interactive multi-label ND image segmentation by cellular automata. In Proceedings of Graphicon; Citeseer: State College, PA, USA, 2005; Volume 1, pp. 150–156. [Google Scholar]
- Hernández, G.; Herrmann, H.J. Cellular automata for elementary image enhancement. Graph. Model. Image Process. 1996, 58, 82–89. [Google Scholar] [CrossRef]
- Roy, S.; Shrivastava, M.; Rawat, U.; Pandey, C.V.; Nayak, S.K. IESCA: An efficient image encryption scheme using 2-D cellular automata. J. Inf. Secur. Appl. 2021, 61, 102919. [Google Scholar] [CrossRef]
- Alexan, W.; ElBeltagy, M.; Aboshousha, A. RGB Image Encryption through Cellular Automata, S-Box and the Lorenz System. Symmetry 2022, 14, 443. [Google Scholar] [CrossRef]
- Katis, I.; Sirakoulis, G.C. Cellular automata on FPGAs for image processing. In Proceedings of the 2012 16th Panhellenic Conference on Informatics, Piraeus, Greece, 5–7 October 2012; IEEE: Pitcataway, NJ, USA, 2012; pp. 308–313. [Google Scholar]
- Zhao, Y.; Billings, S.A.; Routh, A.F. Identification of the Belousov–Zhabotinskii reaction using cellular automata models. Int. J. Bifurc. Chaos 2007, 17, 1687–1701. [Google Scholar] [CrossRef]
- Dourvas, N.I.; Sirakoulis, G.C.; Adamatzky, A. Cellular automaton Belousov–Zhabotinsky model for binary full adder. Int. J. Bifurc. Chaos 2017, 27, 1750089. [Google Scholar] [CrossRef]
- Dai, J.; Zhai, C.; Ai, J.; Ma, J.; Wang, J.; Sun, W. Modeling the spread of epidemics based on cellular automata. Processes 2021, 9, 55. [Google Scholar] [CrossRef]
- Sirakoulis, G.C.; Karafyllidis, I.; Thanailakis, A. A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecol. Model. 2000, 133, 209–223. [Google Scholar] [CrossRef]
- Pokkuluri, K.S.; Nedunuri, S.U.D. A novel cellular automata classifier for covid-19 prediction. J. Health Sci. 2020, 10, 34–38. [Google Scholar] [CrossRef]
- Schimit, P.H. A model based on cellular automata to estimate the social isolation impact on COVID-19 spreading in Brazil. Comput. Methods Programs Biomed. 2021, 200, 105832. [Google Scholar] [CrossRef]
- Louis, P.Y.; Nardi, F.R. Probabilistic Cellular Automata: Theory, Applications and Future Perspectives; Springer: Berlin/Heidelberg, Germany, 2018; Volume 27. [Google Scholar]
- Ghosh, S.; Bhattacharya, S. A data-driven understanding of COVID-19 dynamics using sequential genetic algorithm based probabilistic cellular automata. Appl. Soft Comput. 2020, 96, 106692. [Google Scholar] [CrossRef]
- del Rey, A.M. A computer virus spread model based on cellular automata on graphs. In Proceedings of the International Work-Conference on Artificial Neural Networks, Salamanca, Spain, 10–12 June 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 503–506. [Google Scholar]
- Schneckenreither, G.; Popper, N.; Zauner, G.; Breitenecker, F. Modelling SIR-type epidemics by ODEs, PDEs, difference equations and cellular automata–A comparative study. Simul. Model. Pract. Theory 2008, 16, 1014–1023. [Google Scholar] [CrossRef]
- Almeida, R.M.; Macau, E.E. Stochastic cellular automata model for wildland fire spread dynamics. Proc. J. Phys. Conf. Ser. 2011, 285, 012038. [Google Scholar] [CrossRef]
- Bartolozzi, M.; Thomas, A.W. Stochastic cellular automata model for stock market dynamics. Phys. Rev. E 2004, 69, 046112. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, S. Statistical mechanics of cellular automata. Rev. Mod. Phys. 1983, 55, 601. [Google Scholar] [CrossRef]
- Chua, L.O.; Kang, S.M. Memristive devices and systems. Proc. IEEE 1976, 64, 209–223. [Google Scholar] [CrossRef]
- Chua, L. If it’s pinched it’sa memristor. Semicond. Sci. Technol. 2014, 29, 104001. [Google Scholar] [CrossRef]
- Stathopoulos, S.; Khiat, A.; Trapatseli, M.; Cortese, S.; Serb, A.; Valov, I.; Prodromakis, T. Multibit memory operation of metal-oxide bi-layer memristors. Sci. Rep. 2017, 7, 17532. [Google Scholar] [CrossRef]
- Serb, A.; Bill, J.; Khiat, A.; Berdan, R.; Legenstein, R.; Prodromakis, T. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun. 2016, 7, 12611. [Google Scholar] [CrossRef]
- Nili, H.; Walia, S.; Kandjani, A.E.; Ramanathan, R.; Gutruf, P.; Ahmed, T.; Balendhran, S.; Bansal, V.; Strukov, D.B.; Kavehei, O.; et al. Donor-induced performance tuning of amorphous SrTiO3 memristive nanodevices: Multistate resistive switching and mechanical tunability. Adv. Funct. Mater. 2015, 25, 3172–3182. [Google Scholar] [CrossRef]
- Chen, A.; Haddad, S.; Wu, Y.C.; Fang, T.N.; Lan, Z.; Avanzino, S.; Pangrle, S.; Buynoski, M.; Rathor, M.; Cai, W.; et al. Non-volatile resistive switching for advanced memory applications. In Proceedings of the IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest, Washington, DC, USA, 5 December 2005; IEEE: Pitcataway, NJ, USA, 2005; pp. 746–749. [Google Scholar]
- Yoshida, C.; Tsunoda, K.; Noshiro, H.; Sugiyama, Y. High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application. Appl. Phys. Lett. 2007, 91, 223510. [Google Scholar] [CrossRef]
- Rodrıguez Contreras, J.; Kohlstedt, H.; Poppe, U.; Waser, R.; Buchal, C.; Pertsev, N. Resistive switching in metal–ferroelectric–metal junctions. Appl. Phys. Lett. 2003, 83, 4595–4597. [Google Scholar] [CrossRef]
- Erokhin, V.; Berzina, T.; Fontana, M.P. Hybrid electronic device based on polyaniline-polyethylene oxide junction. J. Appl. Phys. 2005, 97, 064501. [Google Scholar] [CrossRef]
- Erokhin, V.; Fontana, M.P. Electrochemically controlled polymeric device: A memristor (and more) found two years ago. arXiv 2008, arXiv:0807.0333. [Google Scholar]
- Li, C.; Graves, C.E.; Sheng, X.; Miller, D.; Foltin, M.; Pedretti, G.; Strachan, J.P. Analog content-addressable memories with memristors. Nat. Commun. 2020, 11, 1638. [Google Scholar] [CrossRef]
- Lastras-Montano, M.A.; Cheng, K.T. Resistive random-access memory based on ratioed memristors. Nat. Electron. 2018, 1, 466–472. [Google Scholar] [CrossRef]
- Li, C.; Hu, M.; Li, Y.; Jiang, H.; Ge, N.; Montgomery, E.; Zhang, J.; Song, W.; Dávila, N.; Graves, C.E.; et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 2018, 1, 52–59. [Google Scholar] [CrossRef]
- Halawani, Y.; Mohammad, B.; Al-Qutayri, M.; Al-Sarawi, S.F. Memristor-based hardware accelerator for image compression. IEEE Trans. Very Large Scale Integr. (Vlsi) Syst. 2018, 26, 2749–2758. [Google Scholar] [CrossRef]
- Li, C.; Belkin, D.; Li, Y.; Yan, P.; Hu, M.; Ge, N.; Jiang, H.; Montgomery, E.; Lin, P.; Wang, Z.; et al. Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun. 2018, 9, 2385. [Google Scholar] [CrossRef]
- Cheng, M.; Xia, L.; Zhu, Z.; Cai, Y.; Xie, Y.; Wang, Y.; Yang, H. Time: A training-in-memory architecture for memristor-based deep neural networks. In Proceedings of the 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 18–22 June 2017; IEEE: Pitcataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Tzouvadaki, I.; Jolly, P.; Lu, X.; Ingebrandt, S.; De Micheli, G.; Estrela, P.; Carrara, S. Label-free ultrasensitive memristive aptasensor. Nano Lett. 2016, 16, 4472–4476. [Google Scholar] [CrossRef] [PubMed]
- Carrara, S. The Birth of a New Field: Memristive Sensors. A Review. IEEE Sens. J. 2021, 21, 12370–12378. [Google Scholar] [CrossRef]
- Fyrigos, I.A.; Ntinas, V.; Sirakoulis, G.C.; Dimitrakis, P.; Karafyllidis, I. Memristor hardware accelerator of quantum computations. In Proceedings of the 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Genoa, Italy, 27–29 November 2019; IEEE: Pitcataway, NJ, USA, 2019; pp. 799–802. [Google Scholar]
- Available online: https://www.crossbar-inc.com/ (accessed on 8 August 2023).
- Available online: https://www.intrinsicsemi.com/ (accessed on 8 August 2023).
- Available online: https://www.tetramem.com/ (accessed on 8 August 2023).
- Available online: https://news.panasonic.com/global/press/en170201-3 (accessed on 8 August 2023).
- Available online: https://knowm.org/ (accessed on 8 August 2023).
- Available online: https://weebit-nano.com/ (accessed on 8 August 2023).
- Available online: https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-memory.html (accessed on 8 August 2023).
- ArC Instruments. 2022. Available online: https://www.arc-instruments.co.uk/ (accessed on 8 August 2023).
- Vourkas, I.; Batsos, A.; Sirakoulis, G.C. SPICE modeling of nonlinear memristive behavior. Int. J. Circuit Theory Appl. 2015, 43, 553–565. [Google Scholar] [CrossRef]
- Jiang, Z.; Wu, Y.; Yu, S.; Yang, L.; Song, K.; Karim, Z.; Wong, H.S.P. A compact model for metal–oxide resistive random access memory with experiment verification. IEEE Trans. Electron Devices 2016, 63, 1884–1892. [Google Scholar] [CrossRef]
- Vourkas, I.; Sirakoulis, G.C. A novel design and modeling paradigm for memristor-based crossbar circuits. IEEE Trans. Nanotechnol. 2012, 11, 1151–1159. [Google Scholar] [CrossRef]
- Schiff, L. Quantum Mechanics; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Ascoli, A.; Corinto, F.; Tetzlaff, R. Generalized boundary condition memristor model. Int. J. Circuit Theory Appl. 2016, 44, 60–84. [Google Scholar] [CrossRef]
- Corinto, F.; Ascoli, A. A boundary condition-based approach to the modeling of memristor nanostructures. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 2713–2726. [Google Scholar] [CrossRef]
- Stanley Williams, R. How we found the missing memristor. In Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua With DVD-ROM, Composed by Eleonora Bilotta; World Scientific: Singapore, 2013; pp. 483–489. [Google Scholar]
- Liu, T.; Kang, Y.; Verma, M.; Orlowski, M.K. Switching characteristics of antiparallel resistive switches. IEEE Electron Device Lett. 2012, 33, 429–431. [Google Scholar] [CrossRef]
- Batas, D.; Fiedler, H. A memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Trans. Nanotechnol. 2010, 10, 250–255. [Google Scholar] [CrossRef]
- Escudero, M.; Vourkas, I.; Rubio, A.; Moll, F. Memristive logic in crossbar memory arrays: Variability-aware design for higher reliability. IEEE Trans. Nanotechnol. 2019, 18, 635–646. [Google Scholar] [CrossRef]
- Itoh, M.; Chua, L.O. Memristor Cellular Automata and Memristor Discrete-Time Cellular Neural Networks. Int. J. Bifurc. Chaos 2009, 19, 3605. [Google Scholar] [CrossRef]
- Vourkas, I.; Sirakoulis, G.C. Memristive Computing for NP-Hard AI Problems. In Memristor-Based Nanoelectronic Computing Circuits and Architectures; Springer: Berlin/Heidelberg, Germany, 2016; pp. 199–241. [Google Scholar]
- Stathis, D.; Vourkas, I.; Sirakoulis, G.C. Shortest path computing using memristor-based circuits and cellular automata. In Proceedings of the International Conference on Cellular Automata, Krakow, Poland, 22–25 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 398–407. [Google Scholar]
- Vourkas, I.; Stathis, D.; Sirakoulis, G.C. Memristor-based parallel sorting approach using one-dimensional cellular automata. Electron. Lett. 2014, 50, 1819–1821. [Google Scholar] [CrossRef]
- Stathis, D.; Vourkas, I.; Sirakoulis, G.C. Solving AI problems with memristors: A case study for optimal. In Proceedings of the 18th Panhellenic Conference on Informatics, Athens, Greece, 2–4 October 2014; pp. 1–6. [Google Scholar]
- Karamani, R.E.; Ntinas, V.; Vourkas, I.; Sirakoulis, G.C. 1-D memristor-based cellular automaton for pseudo-random number generation. In Proceedings of the 2017 27th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS), Thessaloniki, Greece, 25–27 September 2017; IEEE: Pitcataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Karamani, R.E.; Fyrigos, I.A.; Ntinas, V.; Vourkas, I.; Sirakoulis, G.C. Game of life in memristor cellular automata grid. In Proceedings of the CNNA 2018; The 16th International Workshop on Cellular Nanoscale Networks and their Applications, Budapest, Hungary, 28–30 August 2018; VDE: Frankfurt, Germany, 2018; pp. 1–4. [Google Scholar]
- Karamani, R.E.; Fyrigos, I.A.; Ntinas, V.; Vourkas, I.; Sirakoulis, G.C.; Rubio, A. Memristive cellular automata for modeling of epileptic brain activity. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; IEEE: Pitcataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Gentle, J.E. Random number generation and Monte Carlo methods; Springer: Berlin/Heidelberg, Germany, 2003; Volume 381. [Google Scholar]
- Niederreiter, H. Multidimensional numerical integration using pseudorandom numbers. In Stochastic Programming 84 Part I; Springer: Berlin/Heidelberg, Germany, 1986; pp. 17–38. [Google Scholar]
- Langtangen, H.P. Random Numbers and Simple Games. In A Primer on Scientific Programming with Python; Springer: Berlin/Heidelberg, Germany, 2016; pp. 489–566. [Google Scholar] [CrossRef]
- Sahari, M.L.; Boukemara, I. A pseudo-random numbers generator based on a novel 3D chaotic map with an application to color image encryption. Nonlinear Dyn. 2018, 94, 723–744. [Google Scholar] [CrossRef]
- Min, M. On the Production of Pseudo-random Numbers in Cryptography. J. Chang. Teach. Coll. Technol. 2001. Available online: https://api.semanticscholar.org/CorpusID:124398160 (accessed on 8 August 2023).
- Wolfram, S. Random sequence generation by cellular automata. Adv. Appl. Math. 1986, 7, 123–169. [Google Scholar] [CrossRef]
- Maritz, J.S. Distribution-Free Statistical Methods; CRC Press: Boca Raton, FL, USA, 1995; Volume 17. [Google Scholar]
- Itoh, M.; Chua, L. Memristor cellular automata and memristor discrete-time cellular neural networks. In Handbook of Memristor Networks; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1289–1361. [Google Scholar]
- Duncan, J.S.; Sander, J.W.; Sisodiya, S.M.; Walker, M.C. Adult epilepsy. Lancet 2006, 367, 1087–1100. [Google Scholar] [CrossRef]
- Lytton, W.W. Computer modelling of epilepsy. Nat. Rev. Neurosci. 2008, 9, 626–637. [Google Scholar] [CrossRef] [PubMed]
- Sinha, N.; Dauwels, J.; Kaiser, M.; Cash, S.S.; Brandon Westover, M.; Wang, Y.; Taylor, P.N. Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling. Brain 2017, 140, 319–332. [Google Scholar] [CrossRef]
- Panahi, S.; Aram, Z.; Jafari, S.; Ma, J.; Sprott, J. Modeling of epilepsy based on chaotic artificial neural network. Chaos Solitons Fractals 2017, 105, 150–156. [Google Scholar] [CrossRef]
- Johansen, A.R.; Jin, J.; Maszczyk, T.; Dauwels, J.; Cash, S.S.; Westover, M.B. Epileptiform spike detection via convolutional neural networks. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; IEEE: Pitcataway, NJ, USA, 2016; pp. 754–758. [Google Scholar]
- Merkel, C.; Saleh, Q.; Donahue, C.; Kudithipudi, D. Memristive reservoir computing architecture for epileptic seizure detection. Procedia Comput. Sci. 2014, 41, 249–254. [Google Scholar] [CrossRef]
- Tsoutsouras, V.; Sirakoulis, G.C.; Pavlos, G.P.; Iliopoulos, A.C. Simulation of healthy and epileptiform brain activity using cellular automata. Int. J. Bifurc. Chaos 2012, 22, 1250229. [Google Scholar] [CrossRef]
- Millman, J. A useful network theorem. Proc. IRE 1940, 28, 413–417. [Google Scholar] [CrossRef]
- Conway, J. The game of life. Sci. Am. 1970, 223, 4. [Google Scholar]
- Black, J. Window comparator. Natl. Aeronaut. Space Adm. Rep. 1977. [Google Scholar]
- Secco, J.; Farina, M.; Demarchi, D.; Corinto, F.; Gilli, M. Memristor cellular automata for image pattern recognition and clinical applications. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; IEEE: Pitcataway, NJ, USA, 2016; pp. 1378–1381. [Google Scholar]
- Secco, J.; Farina, M.; Demarchi, D.; Corinto, F. Memristor cellular automata through belief propagation inspired algorithm. In Proceedings of the 2015 International SoC Design Conference (ISOCC), Gyungju, Republic of Korea, 2–5 November 2015; IEEE: Pitcataway, NJ, USA, 2015; pp. 211–212. [Google Scholar]
- Baldassi, C.; Braunstein, A.; Brunel, N.; Zecchina, R. Efficient supervised learning in networks with binary synapses. Proc. Natl. Acad. Sci. USA 2007, 104, 11079–11084. [Google Scholar] [CrossRef] [PubMed]
- Ntinas, V.; Sirakoulis, G.C.; Rubio, A. Memristor-based Probabilistic Cellular Automata. In Proceedings of the 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Lansing, MI, USA, 9–11 August 2021; pp. 792–795. [Google Scholar] [CrossRef]
- Dobrušin, R.L.; Dobrushin, R.; Kriukov, V.; Toom, A. Stochastic Cellular Systems: Ergodicity, Memory, Morphogenesis; Manchester University Press: Manchester, UK, 1990. [Google Scholar]
- Dobrushin, R.L.; Kryukov, V.; Toom, A.L. Locally Interacting Systems and Their Application in Biology; Springer: Berlin/Heidelberg, Germany, 1978. [Google Scholar]
- Ntinas, V.; Fyrigos, I.A.; Karamani, R.E.; Vasileiadis, N.; Dimitrakis, P.; Rubio, A.; Sirakoulis, G.C. MemCA: All-Memristor Design for Deterministic and Probabilistic Cellular Automata Hardware Realization. IEEE Access 2023, 11, 45782–45797. [Google Scholar] [CrossRef]
- Adamatzky, A.; Chua, L. Memristive excitable cellular automata. Int. J. Bifurc. Chaos 2011, 21, 3083–3102. [Google Scholar] [CrossRef]
Current pattern | 111 | 110 | 101 | 100 | 011 | 010 | 001 | 000 |
Central cell’s new state | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
Boundary Condition | First Cell | Last Cell | |
---|---|---|---|
Periodic: | and | ||
Fixed (0/1): | and | ||
Adiabatic: | and | ||
Mirrored: | and |
Operation | M(q) |
---|---|
AND | |
OR | |
XOR | |
XNOR |
0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 |
0 | 1 | 1 | 0 |
1 | 0 | 0 | 0 |
1 | 0 | 1 | 0 |
1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 |
Condition | Probability |
---|---|
0 | |
0 | |
1 | |
0 | |
1 | |
1 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karamani, R.-E.; Fyrigos, I.-A.; Ntinas, V.; Vourkas, I.; Adamatzky, A.; Sirakoulis, G.C. Memristors in Cellular-Automata-Based Computing: A Review. Electronics 2023, 12, 3523. https://doi.org/10.3390/electronics12163523
Karamani R-E, Fyrigos I-A, Ntinas V, Vourkas I, Adamatzky A, Sirakoulis GC. Memristors in Cellular-Automata-Based Computing: A Review. Electronics. 2023; 12(16):3523. https://doi.org/10.3390/electronics12163523
Chicago/Turabian StyleKaramani, Rafailia-Eleni, Iosif-Angelos Fyrigos, Vasileios Ntinas, Ioannis Vourkas, Andrew Adamatzky, and Georgios Ch. Sirakoulis. 2023. "Memristors in Cellular-Automata-Based Computing: A Review" Electronics 12, no. 16: 3523. https://doi.org/10.3390/electronics12163523
APA StyleKaramani, R. -E., Fyrigos, I. -A., Ntinas, V., Vourkas, I., Adamatzky, A., & Sirakoulis, G. C. (2023). Memristors in Cellular-Automata-Based Computing: A Review. Electronics, 12(16), 3523. https://doi.org/10.3390/electronics12163523