A Low Switching Frequency Model Predictive Control Method for an Induction Motor Fed by a 3-Level Inverter
Abstract
:1. Introduction
- (1)
- Based on vector partitioning, the number of candidate voltage vectors can be reduced from 27 to 1~3, and the computation cost of the control system is significantly reduced without affecting the responses.
- (2)
- The switching frequency is greatly reduced without performance deteriorating, which is achieved by the boundary circle limiting strategy.
- (3)
- The cost function can realize multi-objective constraints without weight coefficients and avoid tedious weight factor tuning, which is user-friendly.
2. Model of the Induction Motor
3. Traditional MPVC Control
3.1. MPVC Scheme
3.2. Predictive Flux Control Model
3.3. Prediction of Neutral Point Voltage Deviation
3.4. Cost Function
4. Improved MPVC Control with Optimized Partition
4.1. Space Vector Partition Selection Method
4.2. Boundary Circle Limit
4.3. Balancing Method of Neutral Point Voltage Deviation
5. Simulation and Results Discussion
5.1. Steady State Simulation
5.2. Dynamic Simulation
5.3. Switching Frequency Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bazzi, A.M.; Krein, P.T. Review of Methods for Real-Time Loss Minimization in Induction Machines. IEEE Trans. Ind. Appl. 2010, 46, 2319–2328. [Google Scholar] [CrossRef]
- Hannan, M.A.; Ali, J.A.; Mohamed, A.; Hussain, A. Optimization Techniques to Enhance the Performance of Induction Motor Drives: A Review. Renew. Sustain. Energy Rev. 2018, 81, 1611–1626. [Google Scholar] [CrossRef]
- Messaoudi, M.; Flah, A.; Alotaibi, A.A.; Althobaiti, A.; Sbita, L.; Ziad El-Bayeh, C. Diagnosis and Fault Detection of Rotor Bars in Squirrel Cage Induction Motors Using Combined Park’s Vector and Extended Park’s Vector Approaches. Electronics 2022, 11, 380. [Google Scholar] [CrossRef]
- Varga, T.; Benšić, T.; Jerković Štil, V.; Barukčić, M. Continuous Control Set Predictive Current Control for Induction Machine. Appl. Sci. 2021, 11, 6230. [Google Scholar] [CrossRef]
- Yin, S.; Xia, J.; Zhao, Z.; Zhao, L.; Liu, W.; Diao, L.; Jatskevich, J. Fast Restarting of Free-Running Induction Motors Under Speed-Sensorless Vector Control. IEEE Trans. Ind. Electron. 2020, 67, 6124–6134. [Google Scholar] [CrossRef]
- Aktas, M.; Awaili, K.; Ehsani, M.; Arisoy, A. Direct Torque Control versus Indirect Field-Oriented Control of Induction Motors for Electric Vehicle Applications. Eng. Sci. Technol. Int. J. 2020, 23, 1134–1143. [Google Scholar] [CrossRef]
- Vaez-Zadeh, S.; Jalali, E. Combined Vector Control and Direct Torque Control Method for High Performance Induction Motor Drives. Energy Convers. Manag. 2007, 48, 3095–3101. [Google Scholar] [CrossRef]
- Fu, X.; Li, S. A Novel Neural Network Vector Control Technique for Induction Motor Drive. IEEE Trans. Energy Convers. 2015, 30, 1428–1437. [Google Scholar] [CrossRef]
- Bouguenna, I.F.; Tahour, A.; Kennel, R.; Abdelrahem, M. Multiple-Vector Model Predictive Control with Fuzzy Logic for PMSM Electric Drive Systems. Energies 2021, 14, 1727. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H.; Xia, B. Model-Predictive Control of Induction Motor Drives: Torque Control Versus Flux Control. IEEE Trans. Ind. Appl. 2016, 52, 4050–4060. [Google Scholar] [CrossRef]
- Ayala, M.; Doval-Gandoy, J.; Rodas, J.; Gonzalez, O.; Gregor, R.; Rivera, M. A Novel Modulated Model Predictive Control Applied to Six-Phase Induction Motor Drives. IEEE Trans. Ind. Electron. 2021, 68, 3672–3682. [Google Scholar] [CrossRef]
- Zou, J.; Xu, W.; Yu, X.; Liu, Y.; Ye, C. Multistep Model Predictive Control with Current and Voltage Constraints for Linear Induction Machine Based Urban Transportation. IEEE Trans. Veh. Technol. 2017, 66, 10817–10829. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Bakeer, A.; Alhelou, H.H.; Siano, P.; Mossa, M.A. A New Modulated Finite Control Set-Model Predictive Control of Quasi-Z-Source Inverter for PMSM Drives. Electronics 2021, 10, 2814. [Google Scholar] [CrossRef]
- Yan, L.; Dou, M.; Hua, Z.; Zhang, H.; Yang, J. Optimal Duty Cycle Model Predictive Current Control of High-Altitude Ventilator Induction Motor With Extended Minimum Stator Current Operation. IEEE Trans. Power Electron. 2018, 33, 7240–7251. [Google Scholar] [CrossRef]
- Varga, T.; Benšić, T.; Barukčić, M.; Štil, V.J. Optimization of Fuzzy Controller for Predictive Current Control of Induction Machine. Electronics 2022, 11, 1553. [Google Scholar] [CrossRef]
- Norambuena, M.; Rodriguez, J.; Zhang, Z.; Wang, F.; Garcia, C.; Kennel, R. A Very Simple Strategy for High-Quality Performance of AC Machines Using Model Predictive Control. IEEE Trans. Power Electron. 2019, 34, 794–800. [Google Scholar] [CrossRef]
- Xu, W.; Dong, D.; Zou, J.; Liu, Y. Low-Complexity Multistep Model Predictive Current Control for Linear Induction Machines. IEEE Trans. Power Electron. 2021, 36, 8388–8398. [Google Scholar] [CrossRef]
- Yang, Y.; Wen, H.; Fan, M.; Xie, M.; Chen, R. Fast Finite-Switching-State Model Predictive Control Method Without Weighting Factors for T-Type Three-Level Three-Phase Inverters. IEEE Trans. Ind. Inform. 2019, 15, 1298–1310. [Google Scholar] [CrossRef]
- Arahal, M.R.; Satué, M.G.; Barrero, F.; Ortega, M.G. Adaptive Cost Function FCSMPC for 6-Phase IMs. Energies 2021, 14, 5222. [Google Scholar] [CrossRef]
- Wang, S.; Ma, J.; Liu, B.; Jiao, N.; Liu, T.; Wang, Y. Unified SVPWM Algorithm and Optimization for Single-Phase Three-Level NPC Converters. IEEE Trans. Power Electron. 2020, 35, 7702–7712. [Google Scholar] [CrossRef]
- Deng, Y.; Li, J.; Shin, K.H.; Viitanen, T.; Saeedifard, M.; Harley, R.G. Improved Modulation Scheme for Loss Balancing of Three-Level Active NPC Converters. IEEE Trans. Power Electron. 2017, 32, 2521–2532. [Google Scholar] [CrossRef]
- Xiao, D.; Alam, K.S.; Osman, I.; Akter, P.; Rahman, M.F. Low Complexity Model Predictive Flux Control for 3L-NPC Inverter-Fed Induction Motor Drives without Weighting Factor. IEEE Trans. Ind. Appl. 2020, 56, 6496–6506. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, B.; Xie, F. A Novel SVPWM for Three-Level NPC Inverter Based on m-Mode Controllability. IEEE Trans. Ind. Electron. 2018, 65, 6055–6065. [Google Scholar]
- Habibullah, M.; Lu, D.D.-C.; Xiao, D.; Osman, I.; Rahman, M.F. Selected Prediction Vectors Based FS-PTC for 3L-NPC Inverter Fed Motor Drives. IEEE Trans. Ind. Appl. 2017, 53, 3588–3597. [Google Scholar] [CrossRef]
- Xia, Z.; Liu, Z.; Guerrero, J.M. Multi-Objective Optimal Model Predictive Control for Three-Level ANPC Grid-Connected Inverter. IEEE Access 2020, 8, 59590–59598. [Google Scholar] [CrossRef]
- Doan, N.X.; Nguyen, N.V. Improved Model Predictive Control for Asymmetric T-Type NPC 3-Level Inverter. Electronics 2021, 10, 2244. [Google Scholar] [CrossRef]
- Wang, F.; Lin, G.; He, Y. Passivity-Based Model Predictive Control of Three-Level Inverter-Fed Induction Motor. IEEE Trans. Power Electron. 2021, 36, 1984–1993. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, W.; Ren, M.; Liu, X. Three-Level Active Power Filter Based on Model Predictive Control. Electronics 2022, 11, 1291. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, Y.; Yang, H.; Zhang, B. Low Switching Frequency Model Predictive Control of Three-Level Inverter-Fed IM Drives with Speed-Sensorless and Field-Weakening Operations. IEEE Trans. Ind. Electron. 2019, 66, 4262–4272. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H. Two-Vector-Based Model Predictive Torque Control without Weighting Factors for Induction Motor Drives. IEEE Trans. Power Electron. 2016, 31, 1381–1390. [Google Scholar] [CrossRef]
Present Voltage Vector | Candidate Voltage Vector for Each Sector at the Next Time | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | |
V0 | V0 V9 | V0 V9 | V0 V3 | V0 V3 | V0 V3 | V0 V3 | V0 V1 | V0 V1 | V0 V1 | V0 V1 | V0 V9 | V0 V9 |
V9 | V0 V9 V18 | V0 V12 | V0 V12 | V0 V12 | V0 V12 | V0 | V0 | V0 V10 | V0 V10 | V0 V10 | V0 V10 | V0 V9 V18 |
V13 | V13 V22 | V12 V13 | V12 V13 | V13 V16 | V13 V16 | V4 V13 | V4 V13 | V13 V14 | V13 V14 | V10 V13 | V10 V13 | V13 V22 |
V18 | V9 V18 V21 | V9 V21 | V9 V21 | V9 V21 | V9 | V9 | V9 | V9 | V9 V19 | V9 V19 | V9 V19 | V9 V18 V19 |
V21 | V18 V21 V22 | V12 V21 V24 | V12 V24 | V12 | V12 | V12 | V12 | V22 | V22 | V22 | V22 | V18 V22 |
V22 | V13 V21 V22 | V13 V21 V25 | V13 V25 | V13 V25 | V13 V25 | V13 | V13 | V13 V23 | V13 V23 | V13 V23 | V13 V19 V23 | V13 V19 V22 |
Small Vector | Uo | Small Vector | Uo | Medium Vector | Uo |
---|---|---|---|---|---|
ONN | ↑ | POO | ↓ | PON | ↑ |
PPO | ↑ | OON | ↓ | OPN | ↑ |
NON | ↑ | OPO | ↓ | NPO | ↑ |
OPP | ↑ | NOO | ↓ | NOP | ↑ |
NNO | ↑ | OOP | ↓ | ONP | ↑ |
POP | ↑ | ONO | ↓ | PNO | ↑ |
DC-bus voltage Udc | 450 V |
Rated power PN | 2.2 kW |
Rated voltage UN | 380 V |
Rated frequency fN | 50 Hz |
Rated torque TN | 14 N·m |
Flux amplitude reference ψref | 0.9 Wb |
Number of pole pairs Np | 2 |
Stator resistance Rs | 2.8 Ω |
Rotor resistance Rr | 2.5 Ω |
Mutual inductance Lm | 0.212 H |
Stator inductance Ls | 0.224 H |
Rotor inductance Lr | 0.224 H |
DC-link capacitors C | 680 μF |
Width of potential hysteresis at neutral point voltage deviation h | 5 |
Speed (rpm) | The Average Switching Frequency | ||
---|---|---|---|
Traditional MPVC | MPVC1 | BLMPVC | |
150 | 1367 | 697 | 663 |
300 | 2147 | 1130 | 1100 |
450 | 2660 | 1466 | 1328 |
600 | 2284 | 1771 | 1368 |
750 | 1845 | 1572 | 1151 |
900 | 1710 | 1575 | 1152 |
1050 | 1783 | 1407 | 972 |
1200 | 1417 | 1186 | 931 |
1350 | 1708 | 1102 | 1034 |
1500 | 2111 | 1110 | 1171 |
Mean value | 1903 | 1302 | 1087 |
Speed (rpm) | The Average Switching Frequency | ||
---|---|---|---|
Traditional MPVC | MPVC1 | BLMPVC | |
150 | 4101 | 1381 | 1293 |
300 | 4442 | 1721 | 1441 |
450 | 3917 | 1747 | 1323 |
600 | 3417 | 1543 | 1062 |
750 | 2866 | 1325 | 992 |
900 | 2761 | 1340 | 1085 |
1050 | 2682 | 1282 | 1203 |
1200 | 2590 | 1387 | 1254 |
1350 | 2314 | 1637 | 1268 |
1500 | 2004 | 1837 | 1222 |
Mean value | 3109 | 1520 | 1214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Jiang, G.; Zhang, P.; Chen, J. A Low Switching Frequency Model Predictive Control Method for an Induction Motor Fed by a 3-Level Inverter. Electronics 2023, 12, 3609. https://doi.org/10.3390/electronics12173609
Huang J, Jiang G, Zhang P, Chen J. A Low Switching Frequency Model Predictive Control Method for an Induction Motor Fed by a 3-Level Inverter. Electronics. 2023; 12(17):3609. https://doi.org/10.3390/electronics12173609
Chicago/Turabian StyleHuang, Jingtao, Guangxu Jiang, Peng Zhang, and Jixin Chen. 2023. "A Low Switching Frequency Model Predictive Control Method for an Induction Motor Fed by a 3-Level Inverter" Electronics 12, no. 17: 3609. https://doi.org/10.3390/electronics12173609
APA StyleHuang, J., Jiang, G., Zhang, P., & Chen, J. (2023). A Low Switching Frequency Model Predictive Control Method for an Induction Motor Fed by a 3-Level Inverter. Electronics, 12(17), 3609. https://doi.org/10.3390/electronics12173609