Migratory Perception in Edge-Assisted Internet of Vehicles
Abstract
:1. Introduction
- Due to the various neural network architectures used for cooperative perception in different types of autonomous vehicles, an edge-assisted migratory perception framework is proposed which leverages edge services to perceive data, extracts intermediate features, and fuses them in vehicles to achieve collaborative cognition.
- A discrete time-varying graph is designed to model the relationship between service nodes and edge server nodes. This transforms the service scheduling problem into a link prediction problem to better quantify the temporal variability of services.
- We propose a multi-agent reinforcement learning (MADRL)-based service scheduling method specifically designed to tackle the complex challenges of service placement and migration in a resource-limited environment. Migratory perception services on edge servers are modeled as multiple learning agents to minimize latency and maximize resource utilization for migratory perception.
2. Related Work
2.1. Cognition and Decision Making
2.2. Resource Scheduling
2.3. Security and Intelligent Decision Making
3. System Model and Problem Formulation
3.1. Framework of Migratory Perception
3.2. Network and Computation Model
3.3. Problem Formulation
4. Method
4.1. Intelligent Service Scheduling Discrete Time-Varying Graph Construction
4.2. Intelligent Service Scheduling Decisions Based on Multi-Agent Deep Reinforcement Learning
4.2.1. State Space
4.2.2. Action Space
4.2.3. Reward Function
4.2.4. State Transition
4.3. Edge Computing Resource Scheduling Algorithm Based on QMIX
Algorithm 1: QMIX Algorithm |
Initialize experience replay buffer |
Initialize Q networks for all agents and the mixer |
Initialize target networks for all agents and the mixer |
For each episode = 1, M do |
Collect joint observations from all agents |
For each agent a do |
Select action using exploration strategy |
Execute joint action |
Receive joint reward R and next joint observations |
Store experience tuple in replay buffer |
End for |
Sample mini-batch of experiences from replay buffer |
For each agent a do |
Update Q network using gradient descent |
Calculate local Q-value |
End for |
Calculate global Q-value using mixer network |
Calculate TD target and TD error for each agent |
For each agent i do |
Update Q network using TD error and gradient descent |
Update target network using a soft update rule |
End for |
End for |
5. Experiment
5.1. Experimental Environment
5.1.1. Training Environment
5.1.2. Training Process
5.2. Model Definition and Training
5.2.1. Hardware Description
5.2.2. Experimental Data Description
5.2.3. Model Parameter Settings
5.2.4. Training Output
5.3. Experiment Setup
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Huang, R.; Pedoeem, J.; Chen, C. YOLO-LITE: A real-time object detection algorithm optimized for non-GPU computers. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 2503–2510. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot Multibox Detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. PointPillars: Fast Encoders for Object Detection from Point Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12697–12705. [Google Scholar]
- Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499. [Google Scholar]
- Hu, Y.; Fang, S.; Lei, Z.; Zhong, Y.; Chen, S. Where2comm: Communication-Efficient Collaborative Perception via Spatial Confidence Maps. Adv. Neural Inf. Process. Syst. 2022, 35, 4874–4886. [Google Scholar]
- Xu, R.; Xiang, H.; Tu, Z.; Xia, X.; Yang, M.; Ma, J. V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision Transformer. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2022; pp. 107–124. [Google Scholar]
- Mehr, E.; Jourdan, A.; Thome, N.; Cord, M.; Guitteny, V. DiscoNet: Shapes Learning on Disconnected Manifolds for 3D Editing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3474–3483. [Google Scholar]
- Cohen, T.S.; Geiger, M.; Köhler, J.; Welling, M. Spherical CNNs. arXiv 2018, arXiv:1801.10130. [Google Scholar]
- Jiang, H.; Learned-Miller, E. Face Detection with the Faster R-CNN. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; pp. 650–657. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar]
- Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-net and its Variants for Medical Image Segmentation: A Review of Theory and Applications. IEEE Access 2021, 9, 82031–82057. [Google Scholar]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Bailey, T.; Durrant-Whyte, H. Simultaneous localization and mapping (SLAM): Part II. IEEE Robot. Autom. Mag. 2006, 13, 108–117. [Google Scholar]
- Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar]
- Kenney, J.B. Dedicated Short-Range Communications (DSRC) Standards in the United States. Proc. IEEE 2011, 99, 1162–1182. [Google Scholar] [CrossRef]
- Abboud, K.; Omar, H.A.; Zhuang, W. Interworking of DSRC and Cellular Network Technologies for V2X Communications: A Survey. IEEE Trans. Veh. Technol. 2016, 65, 9457–9470. [Google Scholar]
- Famili, A.; Shen, W.-M.; Weber, R.; Simoudis, E. Data Preprocessing and Intelligent Data Analysis. Intell. Data Anal. 1997, 1, 3–23. [Google Scholar] [CrossRef]
- Dawkins, C.; Srinivasan, T.N.; Whalley, J. Calibration. In Handbook of Econometrics; Elsevier: Amsterdam, The Netherlands, 2001; Volume 5, pp. 3653–3703. [Google Scholar]
- Guyon, I.; Elisseeff, A. An Introduction to Feature Extraction. In Feature Extraction: Foundations and Applications; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–25. [Google Scholar]
- Chen, R.; Hua, Q.; Chang, Y.-S.; Wang, B.; Zhang, L.; Kong, X. A Survey of Collaborative Filtering-Based Recommender Systems: From Traditional Methods to Hybrid Methods Based on Social Networks. IEEE Access 2018, 6, 64301–64320. [Google Scholar]
- Montavon, G.; Samek, W.; Müller, K.-R. Methods for Interpreting and Understanding Deep Neural Networks. Digit. Signal Process. 2018, 73, 1–15. [Google Scholar] [CrossRef]
- Ellison, A.M. Bayesian Inference in Ecology. Ecol. Lett. 2004, 7, 509–520. [Google Scholar] [CrossRef]
- Yager, R.R.; Filev, D.P. Induced Ordered Weighted Averaging Operators. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1999, 29, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, L.A. Fuzzy Logic. Computer 1988, 21, 83–93. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Ensemble Learning: A Survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Wagner, J.; Fischer, V.; Herman, M.; Behnke, S. Multispectral Pedestrian Detection using Deep Fusion Convolutional Neural Networks. ESANN 2016, 587, 509–514. [Google Scholar]
- Harary, F.; Gupta, G. Dynamic Graph Models. Math. Comput. Model. 1997, 25, 79–87. [Google Scholar] [CrossRef]
- Lee, D.; Seung, H.S. Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst. 2000, 13, 1–7. [Google Scholar]
- Huang, B.; Liu, X.; Wang, S.; Pan, L.; Chang, V. Multi-agent reinforcement learning for cost-aware collaborative task execution in energy-harvesting D2D networks. Comput. Netw. 2021, 195, 108176. [Google Scholar] [CrossRef]
- Chen, C.; Xiang, H.; Qiu, T.; Wang, C.; Zhou, Y.; Chang, V. A rear-end collision prediction scheme based on deep learning in the Internet of Vehicles. J. Parallel Distrib. Comput. 2018, 117, 192–204. [Google Scholar] [CrossRef]
- Wang, S.; Xiang, J.; Zhong, Y.; Zhou, Y. Convolutional neural network-based hidden Markov models for rolling element bearing fault identification. Knowl.-Based Syst. 2018, 144, 65–76. [Google Scholar] [CrossRef]
- Wu, X.; Chen, J.; Xie, L.; Chan, L.L.T.; Chen, C.I. Development of convolutional neural network based Gaussian process regression to construct a novel probabilistic virtual metrology in multi-stage semiconductor processes. Control Eng. Pract. 2020, 96, 104262. [Google Scholar] [CrossRef]
- Chen, Z.-X.; Zhao, M.; Hou, L.-P.; Zhang, X.-Q.; Li, B.-Q.; Huang, J.-Q. Toward Practical High-Energy-Density Lithium–Sulfur Pouch Cells: A Review. Adv. Mater. 2022, 34, 2201555. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Wang, K.; Yang, Y.; Zhou, M.-T. Delay-optimal task offloading for dynamic fog networks. In Proceedings of the ICC 2019–2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Chen, X.; Wu, C.; Liu, Z.; Zhang, N.; Ji, Y. Computation offloading in beyond 5G networks: A distributed learning framework and applications. IEEE Wirel. Commun. 2021, 28, 56–62. [Google Scholar] [CrossRef]
- He, Y.; Zhao, N.; Yin, H. Integrated networking, caching, and computing for connected vehicles: A deep reinforcement learning approach. IEEE Trans. Veh. Technol. 2017, 67, 44–55. [Google Scholar] [CrossRef]
- Ren, Y.; Guo, A.; Song, C.; Xing, Y. Dynamic resource allocation scheme and deep deterministic policy gradient-based mobile edge computing slices system. IEEE Access 2021, 9, 86062–86073. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Zheng, W.; Xia, Y.; Li, Y.; Chen, P.; Guo, K.; Xie, H. Multi-objective workflow scheduling with deep-Q-network-based multi-agent reinforcement learning. IEEE Access 2019, 7, 39974–39982. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, H.; Wu, C.; Mao, S.; Ji, Y.; Bennis, M. Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning. IEEE Internet Things J. 2018, 6, 4005–4018. [Google Scholar] [CrossRef]
- Buzachis, A.; Celesti, A.; Galletta, A.; Fazio, M.; Fortino, G.; Villari, M. A multi-agent autonomous intersection management (MA-AIM) system for smart cities leveraging edge-of-things and Blockchain. Inf. Sci. 2020, 522, 148–163. [Google Scholar] [CrossRef]
- Buzachis, A.; Celesti, A.; Galletta, A.; Fazio, M.; Villari, M. A secure and dependable multi-agent autonomous intersection management (MA-AIM) system leveraging blockchain facilities. In Proceedings of the 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), Zurich, Switzerland, 17–20 December 2018; pp. 226–231. [Google Scholar]
- Filocamo, B.; Galletta, A.; Fazio, M.; Ruiz, J.A.; Sotelo, M.Á; Villari, M. An innovative osmotic computing framework for self adapting city traffic in autonomous vehicle environment. In Proceedings of the 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018; pp. 01267–01270. [Google Scholar]
- Rashid, T.; Samvelyan, M.; De Witt, C.S.; Farquhar, G.; Foerster, J.; Whiteson, S. Monotonic value function factorisation for deep multi-agent reinforcement learning. J. Mach. Learn. Res. 2020, 21, 7234–7284. [Google Scholar]
Parameter Name | Value |
---|---|
GRU hidden layer dimension | 64 |
Mixture network hidden layer dimension | 32 |
Exploration factor | 1.0–0.05 |
Reward discount factor | |
Buffer size | 5000 rounds of simulated data |
Sampling batch size | 32 rounds of simulated data |
Target network update frequency | Every 200 rounds of simulation |
Learning rate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, C.; Chen, B.; Qiu, J.; Xu, Y.; Li, M.; Yang, Y. Migratory Perception in Edge-Assisted Internet of Vehicles. Electronics 2023, 12, 3662. https://doi.org/10.3390/electronics12173662
Cai C, Chen B, Qiu J, Xu Y, Li M, Yang Y. Migratory Perception in Edge-Assisted Internet of Vehicles. Electronics. 2023; 12(17):3662. https://doi.org/10.3390/electronics12173662
Chicago/Turabian StyleCai, Chao, Bin Chen, Jiahui Qiu, Yanan Xu, Mengfei Li, and Yujia Yang. 2023. "Migratory Perception in Edge-Assisted Internet of Vehicles" Electronics 12, no. 17: 3662. https://doi.org/10.3390/electronics12173662
APA StyleCai, C., Chen, B., Qiu, J., Xu, Y., Li, M., & Yang, Y. (2023). Migratory Perception in Edge-Assisted Internet of Vehicles. Electronics, 12(17), 3662. https://doi.org/10.3390/electronics12173662