Thermal and Optical Analysis of Quantum-Dot-Converted White LEDs in Harsh Environments
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Optical Analysis
3.2. Thermal Analysis
4. Conclusions
- 1.
- In the WLED packaging process, in addition to the impact of luminous-flux decline during the work process, the changes in lighting quality should also be considered.
- 2.
- In the case of noncritical working environments, the WLEDs could be lit first as the initial parameters until the CRI is stable.
- 3.
- In long-term use, QD-WLED devices with a color temperature slightly lower than the target could be chosen so that the color temperature of the LED could meet the requirements for a longer time.
- 4.
- In addition to the calculation results of the CRI, the specific spectrum and CRI trends during long-term use should also be considered.
- 5.
- The device’s heating problem can be improved by choosing a silicone with better temperature resistance or by using replaceable separated silicone film to extend the service life.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schubert, E.F.; Kim, J.K.; Luo, H.; Xi, J.Q. Solid-State Lighting—A Benevolent Technology. Rep. Prog. Phys. 2006, 69, 3069–3099. [Google Scholar] [CrossRef]
- Cengiz, C.; Azarifar, M.; Arik, M. A Critical Review on the Junction Temperature Measurement of Light Emitting Diodes. Micromachines 2022, 13, 1615. [Google Scholar] [CrossRef]
- Xie, B.; Wang, Y.J.; Liu, H.C.; Ma, J.L.; Zhou, S.L.; Yu, X.J.; Lan, W.; Wang, K.; Hu, R.; Luo, X.B. Targeting Cooling for Quantum Dots by 57.3 Degrees C with Air-Bubbles-Assembled Three-Dimensional Hexagonal Boron Nitride Heat Dissipation Networks. Chem. Eng. J. 2022, 427, 130958. [Google Scholar] [CrossRef]
- Nair, G.B.; Swart, H.C.; Dhoble, S.J. A Review on the Advancements in Phosphor-Converted Light Emitting Diodes (pc-LEDs): Phosphor Synthesis, Device Fabrication and Characterization. Prog. Mater. Sci. 2020, 109, 100622. [Google Scholar] [CrossRef]
- Cho, J.; Park, J.H.; Kim, J.K.; Schubert, E.F. White Lighting-Emitting Diodes: History, Progress, and Future. Laser Photonics Rev. 2017, 11, 1600147. [Google Scholar] [CrossRef]
- Yan, D.D.; Zhao, S.Y.; Zhang, Y.B.; Wang, H.X.; Zang, Z.G. Highly Efficient Emission and High-CRI Warm White Light-Emitting Diodes from Ligand-Modified CsPbBr3 Quantum Dots. Opto-Electron. Adv. 2022, 5, 200075. [Google Scholar] [CrossRef]
- Perikala, M.; Bhardwaj, A. Excellent Color Rendering Index Single System White Light Emitting Carbon Dots for Next Generation Lighting Devices. Sci. Rep. 2021, 11, 11594. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.; Bae, W.K.; Zorn, M.; Woo, H.; Yoon, H.; Lim, J.; Kang, S.W.; Weber, S.; Butt, H.J.; Zentel, R.; et al. Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application in Light-Emitting Diodes. Adv. Mater. 2009, 21, 5022–5026. [Google Scholar] [CrossRef]
- Demir, H.V.; Nizamoglu, S.; Erdem, T.; Mutlugun, E.; Gaponik, N.; Eychmuller, A. Quantum Dot Integrated LEDs Using Photonic and Excitonic Color Conversion. Nano Today 2011, 6, 632–647. [Google Scholar] [CrossRef]
- Onal, A.; Sadeghi, S.; Melikov, R.; Karatum, O.; Eren, G.O.; Nizamoglu, S. Quantum Dot to Nanorod Transition for Efficient White-Light-Emitting Diodes with Suppressed Absorption Losses. ACS Photonics 2022, 9, 3268–3278. [Google Scholar] [CrossRef]
- Shang, Y.Q.; Ning, Z.J. Colloidal Quantum-Dots Surface and Device Structure Engineering for High-Performance Light-Emitting Diodes. Natl. Sci. Rev. 2017, 4, 170–183. [Google Scholar] [CrossRef]
- Naghadeh, S.B.; Luo, B.B.; Abdelmageed, G.; Pu, Y.C.; Zhang, C.; Zhang, J.Z. Photophysical Properties and Improved Stability of Organic-Inorganic Perovskite by Surface Passivation. J. Phys. Chem. C 2018, 122, 15799–15818. [Google Scholar] [CrossRef]
- Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications. Adv. Mater. 2019, 31, 1804294. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhao, J.Z.; Yu, Z.K.; Wang, Q.; Liu, J.X.; Chen, M.X.; Mou, Y. High-Performance Phosphor-in-Glass Film on Thermoelectric Generator for Non-Radiative Energy Recycling in Laser Lighting. Adv. Mater. Technol. 2023, 8, 2202162. [Google Scholar] [CrossRef]
- Tsai, C.C.; Cheng, W.C.; Chang, J.K.; Chen, L.Y.; Chen, J.H.; Hsu, Y.C.; Cheng, W.H. Ultra-High Thermal-Stable Glass Phosphor Layer for Phosphor-Converted White Light-Emitting Diodes. J. Disp. Technol. 2013, 9, 427–432. [Google Scholar] [CrossRef]
- Liu, L.L.; Tan, X.Z.; Li, Y.Z.; Wu, M.Y.; Teng, D.D.; Wang, G. Reliability Concerns Related with the Usage of Inorganic Particles in White Light-Emitting Diodes. IEEE Trans. Device Mater. Reliab. 2014, 14, 968–971. [Google Scholar] [CrossRef]
- Tsai, C.C.; Cheng, W.C.; Chang, J.K.; Huang, S.Y.; Liou, J.S.; Chen, G.H.; Huang, Y.C.; Wang, J.S.; Cheng, W.H. Thermal-Stability Comparison of Glass- and Silicone-Based High-Power Phosphor-Converted White-Light-Emitting Diodes under Thermal Aging. IEEE Trans. Device Mater. Reliab. 2014, 14, 4–8. [Google Scholar] [CrossRef]
- Yin, L.Q.; Bai, Y.; Zhou, J.; Cao, J.; Sun, X.W.; Zhang, J.H. The Thermal Stability Performances of the Color Rendering Index of White Light Emitting Diodes with the Red Quantum Dots Encapsulation. Opt. Mater. 2015, 42, 187–192. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, Y.K.; Kim, J.P.; Yun, C.H. Enhanced Reliability of Phosphor-Converted White Light-Emitting Diodes Based on A Laser-Cured Silicone Encapsulant Layer. Microelectron. Reliab. 2022, 137, 114756. [Google Scholar] [CrossRef]
- Xie, B.; Zhao, W.X.; Hu, R.; Luo, X.B. Alignment Engineering of Thermal Materials. Mater. Sci. Eng. R-Rep. 2023, 154, 100738. [Google Scholar] [CrossRef]
- Xie, B.; Liu, H.C.; Hu, R.; Wang, C.F.; Hao, J.J.; Wang, K.; Luo, X.B. Targeting Cooling for Quantum Dots in White QDs-LEDs by Hexagonal Boron Nitride Platelets with Electrostatic Bonding. Adv. Funct. Mater. 2018, 28, 101407. [Google Scholar] [CrossRef]
Electro-Optical Conversion Efficiency | Before Aging | After Aging |
---|---|---|
N1 (chip) | 50.34% | 48.93% |
N2 (Silicone) | 64.06% | 59.16% |
N3 (Phosphor–silicone) | 41.04% | 34.97% |
N3 (QD–silicone) | 30.59% | 24.49% |
N3 (Phosphor/QD–silicone) | 33.69% | 29.26% |
Before Aging | After Aging | Change Ratio | |
---|---|---|---|
E1/Ein | 49.66% | 51.07% | 2.84% |
(E1 + E3 − K)/Ein | 35.94% | 40.84% | 13.65% |
Phosphor–silicone | |||
Ethermal/Ein | 58.96% | 65.03% | 10.30% |
E2/Ein | 23.03% | 24.19% | 5.03% |
QD–silicone | |||
Ethermal/Ein | 69.41% | 75.51% | 8.79% |
E2/Ein | 33.48% | 34.67% | 3.56% |
Phosphor/QD–silicone | |||
Ethermal/Ein | 66.31% | 70.74% | 6.68% |
E2/Ein | 30.37% | 29.90% | −1.55% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, N.; Yang, X.; Xie, B.; Luo, X. Thermal and Optical Analysis of Quantum-Dot-Converted White LEDs in Harsh Environments. Electronics 2023, 12, 3844. https://doi.org/10.3390/electronics12183844
Pei N, Yang X, Xie B, Luo X. Thermal and Optical Analysis of Quantum-Dot-Converted White LEDs in Harsh Environments. Electronics. 2023; 12(18):3844. https://doi.org/10.3390/electronics12183844
Chicago/Turabian StylePei, Naiqi, Xuan Yang, Bin Xie, and Xiaobing Luo. 2023. "Thermal and Optical Analysis of Quantum-Dot-Converted White LEDs in Harsh Environments" Electronics 12, no. 18: 3844. https://doi.org/10.3390/electronics12183844
APA StylePei, N., Yang, X., Xie, B., & Luo, X. (2023). Thermal and Optical Analysis of Quantum-Dot-Converted White LEDs in Harsh Environments. Electronics, 12(18), 3844. https://doi.org/10.3390/electronics12183844