An Improved Spatio-Temporally Smoothed Coherence Factor Combined with Delay Multiply and Sum Beamformer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spatio-Temporally Smoothed Coherence Factor
2.2. Generalized Coherence Factor
2.3. Delay Multiply and Sum Beamforming
2.4. Proposed Method
3. Simulation and Experimental Datasets
3.1. Simulated Data Set
3.2. Experimental Data Set
3.3. Image Quality Metrics
4. Results
4.1. Simulated Point Target Results
4.2. Simulated Cyst Target Result
4.3. Carotid Artery Experiment
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wells, P.N.T. Ultrasonics in medicine and biology. Phys. Med. Biol. 1977, 22, 629–669. [Google Scholar] [CrossRef] [PubMed]
- Tanter, M.; Fink, M. Ultrafast imaging in biomedical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 102–119. [Google Scholar] [CrossRef] [PubMed]
- Montaldo, G.; Tanter, M.; Bercoff, J.; Benech, N.; Fink, M. Coherentplane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 489–506. [Google Scholar] [CrossRef] [PubMed]
- Matrone, G.; Savoia, A.S.; Caliano, G.; Magenes, G. The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging. IEEE Trans. Med. Imaging 2015, 34, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Matrone, G.; Ramalli, A.; Tortoli, P.; Magenes, G. Experimental evaluation of ultrasound higher order harmonic imaging with filtered delay multiply and sum (F-DMAS) non-linear beamforming. Ultrasonics 2018, 86, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Synnevåg, J.F.; Austeng, A.; Holm, S. Adaptive beamforming applied to medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 1606–1613. [Google Scholar] [CrossRef]
- Synnevåg, J.F.; Austeng, A.; Holm, S. A low-complexity data-dependent beamformer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 281–289. [Google Scholar]
- Hollman, K.W.; Rigby, K.W.; O’donnell, M. Coherence factor of speckle from a multi-row probe. In Proceedings of the 1999 IEEE Ultrasonics Symposium, Tahoe, NV, USA, 17–20 October 1999; pp. 1257–1260. [Google Scholar]
- Nilsen, C.I.C.; Holm, S. Wiener beamforming and the coher-ence factor in ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 1329–1346. [Google Scholar] [CrossRef]
- Li, P.C.; Li, M.L. Adaptive imaging using the generalized co-herence factor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 128–141. [Google Scholar]
- Xu, M.; Yang, X.; Ding, M.; Yuchi, M. Spatio-temporally Smoothed Coherence Factor for Ultrasound Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 182–190. [Google Scholar] [CrossRef]
- Shan, T.J.; Wax, M.; Kailath, T. On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 806–811. [Google Scholar] [CrossRef]
- Lan, Z.; Jin, L.; Feng, S. Joint Generalized Coherence Factor and Minimum Variance Beamformer for Synthetic Aperture. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 1167–1183. [Google Scholar]
- Varray, F.; Kalkhoran, M.A.; Vray, D. Adaptive minimum variance coupled with sign and phase coherence factors in IQ domain for plane wave beamforming. In Proceedings of the International Ultrasonic Symposium (IUS), Tours, France, 18–21 September 2016; pp. 1–4. [Google Scholar]
- Behar, V.; Adam, D.; Friedman, Z. A new method of spatial compounding imaging. Ultrasonics 2003, 41, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, P. SNR-Dependent Coherence-Based Adaptive Imaging for High-Frame-Rate Ultrasonic and Photoacoustic Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 1419–1432. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Gao, Q.; Lu, M. An improved spatio-temporally smoothed coherence factor combined with eigenspace-based minimun variance beamformer for plane-wave imaging in medical ultrasound. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017. [Google Scholar]
- Wagner, R.F.; Insana, M.F.; Smith, S.W. Fundamental correlation lengths of coherent speckle in medical ultrasonic images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1988, 35, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Synnevåg, J.F.; Nilsen, C.I.C.; Holm, S. P2B-13 Speckle statistics in adaptive beamforming. In Proceedings of the 2007 IEEE Ultrasonics Symposium, New York, NY, USA, 28–31 October 2007; pp. 1545–1548. [Google Scholar]
- Matone, G.; Ramalli, A.; D’hooge, J. Spatial Coherence Based Beamforming in Multi-Line Transmit Echocardiography. In Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–25 October 2018. [Google Scholar] [CrossRef]
- Synnevåg, J.-F.; Austeng, A.; Holm, S. A low-complexity data dependent beamformer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Synnevag, J.-F.; Austeng, A.; Holm, S. Benefits of minimumvariance beamforming in medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 1868–1879. [Google Scholar] [CrossRef]
- Zimbico, J.; Granado, D.W.; Schneider, F.K.; Maia, J.M.; Assef, A.A.; Schiefler, N., Jr.; Costa, E.T. Eigenspace generalized sidelobe canceller combined with SNR dependent coherence factor for plane wave imaging. Biomed. Eng. Online 2018, 17, 109. [Google Scholar] [CrossRef]
- Asl, B.M.; Mahloojifar, A. Minimum variance beamforming combined with adaptive coherence weighting applied to medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 1923–1931. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Yu, J.; Guo, W.; Li, T.; Zheng, Y.-P. Subarray coherence based postfilter for eigenspace based minimum variance beamformer in ultrasound plane-wave imaging. Ultrasonics 2016, 65, 23–33. [Google Scholar] [CrossRef]
- Deylami, A.M.; Jensen, J.A.; Asl, B.M. An improved minimum variance beamforming applied to plane-wave imaging in medical ultrasound. In Proceedings of the 2016 IEEE International Ultrasonics Symposium (IUS), Tours, France, 18–21 September 2016; pp. 1–4. [Google Scholar]
- Qi, Y.; Wang, Y.; Yu, J.; Guo, Y. 2-D Minimum Variance Based Plane Wave Compounding with Generalized Coherence Factor in Ultrafast Ultrasound Imaging. Sensors 2018, 18, 4099. [Google Scholar] [CrossRef] [PubMed]
- Asl, B.M.; Mahloojifar, A. Contrast enhancement and robustness improvement of adaptive ultrasound imaging using forward-backward minimum variance beamforming. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Geng, X.; Yao, F.; Liu, L.; Guo, Z.; Zhang, Y.; Wang, Y. The Ultrasound Signal Processing Based on High-Performance CORDIC Algorithm and Radial Artery Imaging Implementation. Appl. Sci. 2023, 13, 5664. [Google Scholar] [CrossRef]
- Ali, I.; Saleem, M.T. Spatiotemporal Dynamics of Reaction–Diffusion System and Its Application to Turing Pattern Formation in a Gray–Scott Model. Mathematics 2023, 11, 1459. [Google Scholar] [CrossRef]
- Kaddoura, T.; Zemp, R.J. Hadamard Aperiodic Interval Codes for Parallel-Transmission 2D and 3D Synthetic Aperture Ultrasound Imaging. Appl. Sci. 2022, 12, 4917. [Google Scholar] [CrossRef]
- Khan, S.U.; Ali, I. Application of Legendre spectral-collocation method to delay differential and stochastic delay differential equation. AIP Adv. 2018, 8, 035301. [Google Scholar] [CrossRef]
- Rindal, O.M.H.; Aakhus, S.; Holm, S.; Austeng, A. Hypothesis of improved visualization of microstructures in the interventricular septum with ultrasound and adaptive beamforming. Ultrasound Med. Biol. 2017, 43, 2494–2499. Available online: http://www.sciencedirect.com/science/article/pii/S0301562917302466 (accessed on 5 May 2018). [CrossRef]
- Nguyen, N.Q.; Prager, R.W. Minimum variance approaches to ultrasound pixel-based beamforming. IEEE Trans. Med. Imaging 2017, 36, 374–384. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, Y.; Guo, W. Joint subarray coherence and minimum variance beamformer for multitransmission ultrasound imaging modalities. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 1600–1617. [Google Scholar] [CrossRef]
- Szasz, T.; Basarab, A.; Kouame, D. Beamforming through regularized inverse problems in ultrasound medical imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 2031–2044. [Google Scholar] [CrossRef]
Method | ||
---|---|---|
20 mm | 40 mm | |
DAS | 3.762 | 3.831 |
DMAS | 1.032 | 1.157 |
DAS-CF | 0.525 | 0.543 |
DMAS-CF | 0.463 | 0.584 |
DMAS + STS-CF | 0.587 | 1.034 |
DMAS + GSTS-CF | 0.494 | 0.612 |
Method | CR (dB) | CNR | sSNR | |||
---|---|---|---|---|---|---|
DAS | 2.3838 × 10−4 | 3.60 × 10−3 | −12.7348 | 1.7998 | 1.9323 | 0.0173 |
DMAS | 1.7782 × 10−4 | 7.09 × 10−4 | −16.6694 | 1.2375 | 1.4648 | 0.0698 |
DAS-CF | 3.2876 × 10−5 | 6.03 × 10−4 | −20.2362 | 0.9213 | 1.1923 | 0.0876 |
DMAS-CF | 4.2484 × 10−7 | 3.03 × 10−5 | −32.9846 | 0.7694 | 0.9386 | 0.0945 |
DMAS + STS-CF | 5.9576 × 10−5 | 3.09 × 10−4 | −21.6455 | 1.3393 | 1.5328 | 0.0583 |
DMAS + GSTS-CF | 1.1661 × 10−6 | 5.03 × 10−4 | −29.3099 | 1.5420 | 1.7632 | 0.0352 |
Method | CR | CNR | |||
---|---|---|---|---|---|
DAS | 7.8059 × 104 | −11.324 | 2.0238 | 2.9260 | 1.58 |
DMAS | 4.6285 × 104 | −19.736 | 1.2876 | 2.0006 | 2.87 |
DMAS-CF | 3.2523 × 103 | −33.254 | 0.2375 | 1.5832 | 5.47 |
DMAS + STS-CF | 3.3379 × 104 | −25.232 | 1.3236 | 2.4815 | 2.53 |
DMAS + GSTS-CF | 1.7438 × 104 | −28.765 | 1.6342 | 2.8156 | 1.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Geng, X.; Yao, F.; Liu, L.; Zhang, C.; Zhang, Y.; Wang, Y. An Improved Spatio-Temporally Smoothed Coherence Factor Combined with Delay Multiply and Sum Beamformer. Electronics 2023, 12, 3902. https://doi.org/10.3390/electronics12183902
Guo Z, Geng X, Yao F, Liu L, Zhang C, Zhang Y, Wang Y. An Improved Spatio-Temporally Smoothed Coherence Factor Combined with Delay Multiply and Sum Beamformer. Electronics. 2023; 12(18):3902. https://doi.org/10.3390/electronics12183902
Chicago/Turabian StyleGuo, Ziyang, Xingguang Geng, Fei Yao, Liyuan Liu, Chaohong Zhang, Yitao Zhang, and Yunfeng Wang. 2023. "An Improved Spatio-Temporally Smoothed Coherence Factor Combined with Delay Multiply and Sum Beamformer" Electronics 12, no. 18: 3902. https://doi.org/10.3390/electronics12183902
APA StyleGuo, Z., Geng, X., Yao, F., Liu, L., Zhang, C., Zhang, Y., & Wang, Y. (2023). An Improved Spatio-Temporally Smoothed Coherence Factor Combined with Delay Multiply and Sum Beamformer. Electronics, 12(18), 3902. https://doi.org/10.3390/electronics12183902