Learning Spatial Configuration Feature for Landmark Localization in Hand X-rays
Abstract
:1. Introduction
2. Related Works
3. Methods
3.1. Heatmap Regression Using U-Net
3.2. Spatial Feature Embedding
3.3. Spatial Configuration Loss
4. Results
4.1. Dataset
4.2. Implementation Details
4.3. Performance Comparison
4.4. Ablation Study
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Huang, C.; Hsieh, M.; Li, C.; Chang, S.; Li, W.; Vandaele, R.; Marée, R.; Jodogne, S.; Geurts, P. Evaluation and comparison of anatomical landmark detection methods for cephalometric x-ray images: A grand challenge. IEEE Trans. Med. Imaging 2015, 34, 1890–1900. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huang, C.; Lee, J.; Li, C.; Chang, S.; Siao, M.; Lai, T.; Ibragimov, B.; Vrtovec, T.; Ronneberger, O. A benchmark for comparison of dental radiography analysis algorithms. Med. Image Anal. 2016, 31, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Noothout, J.M.; De Vos, B.D.; Wolterink, J.M.; Postma, E.M.; Smeets, P.A.; Takx, R.A.; Leiner, T.; Viergever, M.A.; Išgum, I. Deep learning-based regression and classification for automatic landmark localization in medical images. IEEE Trans. Med. Imaging 2020, 39, 4011–4022. [Google Scholar] [CrossRef] [PubMed]
- Al, W.A.; Yun, I.D. Partial policy-based reinforcement learning for anatomical landmark localization in 3d medical images. IEEE Trans. Med. Imaging 2019, 39, 1245–1255. [Google Scholar]
- Lindner, C.; Wang, C.; Huang, C.; Li, C.; Chang, S.; Cootes, T.F. Fully automatic system for accurate localisation and analysis of cephalometric landmarks in lateral cephalograms. Sci. Rep. 2016, 6, 33581. [Google Scholar] [CrossRef] [PubMed]
- Štern, D.; Payer, C.; Lepetit, V.; Urschler, M. Automated Age Estimation from Hand MRI Volumes Using Deep Learning; Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016; Springer: Cham, Switzerland, 2016; Volume 9901, pp. 194–202. [Google Scholar]
- Luvizon, D.C.; Tabia, H.; Picard, D. Human Pose Regression by Combining Indirect Part Detection and Contextual Information. Comput. Graph. 2019, 85, 15–22. [Google Scholar] [CrossRef]
- Chu, C.; Chen, C.; Nolte, L.P.; Zheng, G. Fully Automatic Cephalometric X-ray Landmark Detection Using Random Forest Regression and Sparse Shape Composition. Submitted to Automatic Cephalometric X-ray Landmark Detection Challenge. 2014. Available online: https://api.semanticscholar.org/CorpusID:160017622 (accessed on 17 September 2023).
- Chen, C.; Zheng, G. Fully-automatic landmark detection in cephalometric x-ray images by data-driven image displacement estimation. In Proceedings of the ISBI International Symposium on Biomedical Imaging, Beijing, China, 29 April–2 May 2014. [Google Scholar]
- Chen, C.; Wang, C.; Huang, C.; Li, C.; Zheng, G. Fully-Automatic Landmark Detection in Skull X-ray Images. Submitted to Automatic Cephalometric X-ray Landmark Detection Challenge. 2014. Available online: https://api.semanticscholar.org/CorpusID:6412774 (accessed on 17 September 2023).
- Mirzaalian, H.; Hamarneh, G. Automatic Globally-Optimal Pictorial Structures with Random Decision Forest Based Likelihoods for Cephalometric X-ray Landmark Detection; Simon Fraser University: Burnaby, BC, Canada, 2014. [Google Scholar]
- Vandaele, R.; Maré, R.; Jodogne, S.; Geurts, P. Automatic Cephalometric X-Ray Landmark Detection Challenge 2014: A Tree-Based Algorithm; University of Liege: Liege, Belgium, 2014. [Google Scholar]
- Urschler, M.; Ebner, T.; Štern, D. Integrating geometric configuration and appearance information into a unified framework for anatomical landmark localization. Med. Image Anal. 2018, 43, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Ibragimov, B.; Likar, B.; Pernus, F.; Vrtovec, T. Automatic Cephalometric X-ray Landmark Detection by Applying Game Theory and Random Forests; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–8. [Google Scholar]
- Oh, K.; Oh, I.; Lee, D. Deep anatomical context feature learning for cephalometric landmark detection. IEEE J. Biomed. Health Inform. 2020, 25, 806–817. [Google Scholar] [CrossRef]
- Arık, S.Ö.; Ibragimov, B.; Xing, L. Fully automated quantitative cephalometry using convolutional neural networks. J. Med. Imaging 2017, 4, 014501. [Google Scholar] [CrossRef] [PubMed]
- Park, S.B. Cephalometric Landmarks Detection using Fully Convolutional Networks. Ph.D. Thesis, Seoul National University Graduate School, Seoul, Republic of Korea, 2017. [Google Scholar]
- Payer, C.; Štern, D.; Bischof, H.; Urschler, M. Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med. Image Anal. 2019, 54, 207–219. [Google Scholar] [CrossRef]
- Chen, R.; Ma, Y.; Chen, N.; Lee, D.; Wang, W. Cephalometric Landmark Detection by Attentive Feature Pyramid Fusion and Regression-Voting; Medical Image Computing and Computer Assisted Intervention—MICCAI 2019; Springer: Cham, Switzerland, 2019; pp. 873–881. [Google Scholar]
- Ourselin, S.; Joskowicz, L.; Sabuncu, M.R.; Unal, G.; Wells, W. Regressing Heatmaps for Multiple Landmark Localization Using CNNs; Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016; Springer: Cham, Switzerland, 2016; Volume 9901, pp. 230–238. [Google Scholar]
- Liu, X.; Gao, K.; Liu, B.; Pan, C.; Liang, K.; Yan, L.; Ma, J.; He, F.; Zhang, S.; Pan, S. Advances in deep learning-based medical image analysis. Health Data Sci. 2021, 2021, 786793. [Google Scholar] [CrossRef]
- Lindner, C.; Bromiley, P.A.; Ionita, M.C.; Cootes, T.F. Robust and accurate shape model matching using random forest regression-voting. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 1862–1874. [Google Scholar] [CrossRef]
- Chen, C.; Yang, X.; Huang, R.; Shi, W.; Liu, S.; Lin, M.; Huang, Y.; Yang, Y.; Zhang, Y.; Luo, H. Region proposal network with graph prior and IoU-balance loss for landmark detection in 3D ultrasound. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 1–5. [Google Scholar]
- Yang, D.; Zhang, S.; Yan, Z.; Tan, C.; Li, K.; Metaxas, D. Automated anatomical landmark detection ondistal femur surface using convolutional neural network. In Proceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), New York, NY, USA, 16–19 April 2015; pp. 17–21. [Google Scholar]
- Bayramoglu, N.; Nieminen, M.T.; Saarakkala, S. Machine learning based texture analysis of patella from X-rays for detecting patellofemoral osteoarthritis. Int. J. Med. Inf. 2022, 157, 104627. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Park, M.; Kim, J. Cephalometric Landmark Detection in Dental X-ray Images Using Convolutional Neural Networks; SPIE: Orlando, FL, USA, 2017; Volume 10134. [Google Scholar] [CrossRef]
- Qian, J.; Cheng, M.; Tao, Y.; Lin, J.; Lin, H. CephaNet: An Improved Faster R-CNN for Cephalometric Landmark Detection. In Proceedings of the 2019 IEEE 16th International symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 868–871. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, M.; Shen, D. Detecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networks. IEEE Trans. Image Process. 2017, 26, 4753–4764. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Yan, Z.; Liu, S.; Zhou, Y.; Qiu, L. Cascaded convolutional networks for automatic cephalometric landmark detection. Med. Image Anal. 2021, 68, 101904. [Google Scholar] [CrossRef] [PubMed]
- Ao, Y.; Wu, H. Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection. J. Digit. Imaging 2023, 36, 547–561. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Shim, E.; Park, J.; Kim, Y.; Lee, U.; Kim, Y. Web-based fully automated cephalometric analysis by deep learning. Comput. Methods Programs Biomed. 2020, 194, 105513. [Google Scholar] [CrossRef] [PubMed]
- Lian, C.; Liu, M.; Zhang, J.; Shen, D. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 880–893. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 Conference Proceedings, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention u-net: Learning where to look for the pancreas. arXiv 2018. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, K.S.; Bernhardt, D.; Comaniciu, D. Search strategies for multiple landmark detection by submodular maximization. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2831–2838. [Google Scholar] [CrossRef]
- Kang, J.; Oh, K.; Oh, I. Accurate landmark localization for medical images using perturbations. Appl. Sci. 2021, 11, 10277. [Google Scholar] [CrossRef]
Dataset | Digital Hand Atlas | |
---|---|---|
Number of landmarks | 37 | |
Number of images | 895 | |
Three-fold cross-validation | Fold 1 | Train 597/Test 298 |
Fold 2 | Train 597/Test 298 | |
Fold 3 | Train 597/Test 298 | |
Resolution | (Average) |
Method | PE (mm) | EDR (%) | |||
---|---|---|---|---|---|
Mean | SD | >2 mm | >4 mm | >10 mm | |
Štern et al. [6] | 0.80 | 7.80% | 1.55% | 0.05% | |
Urschler et al. [13] | 0.80 | 7.81% | 1.54% | 0.05% | |
Payer et al. [18] | 0.66 | 5.01% | 0.73% | 0.01% | |
Oh et al. [15] | 0.63 | 3.93% | 0.33% | 0.01% | |
Kang et al. [37] | 0.64 | 3.96% | 0.34% | 0.02% | |
The proposed method | 0.61 | ±0.61 | 3.72% | 0.31% | 0.01% |
Method | PE (mm) | EDR (%) | |||
---|---|---|---|---|---|
Mean | SD | >2 mm | >4 mm | >10 mm | |
U-Net | 0.66 | 4.24% | 0.46% | 0.03% | |
SC Loss (Cartesian) | 0.63 | 3.81% | 0.35% | 0.01% | |
SC Loss (Polar) | 0.62 | 3.79% | 0.33% | 0.01% | |
SC Loss (Cartesian + Polar) | 0.61 | ±0.61 | 3.72% | 0.31% | 0.01% |
PE (mm) | EDR (%) | ||||
---|---|---|---|---|---|
Mean | SD | >2 mm | >4 mm | >10 mm | |
1 | 0.63 | 3.74% | 0.36% | 0.01% | |
5 | 0.62 | 3.76% | 0.32% | 0.01% | |
10 | 0.61 | ±0.61 | 3.72% | 0.31% | 0.01% |
20 | 0.65 | 3.98% | 0.36% | 0.02% | |
30 | 0.64 | 3.88% | 0.35% | 0.01% |
Weight Parameter γ | PE (mm) | EDR (%) | |||
---|---|---|---|---|---|
Mean | SD | >2 mm | >4 mm | >10 mm | |
0 | 0.66 | 4.24% | 0.46% | 0.03% | |
1 × 100 | 0.74 | 8.59% | 4.85% | 0.99% | |
1 × 10−1 | 0.70 | 6.88% | 3.44% | 0.15% | |
1 × 10−2 | 0.66 | 4.15% | 0.48% | 0.02% | |
1 × 10−3 | 0.63 | 3.75% | 0.44% | 0.01% | |
1 × 10−4 | 0.61 | ±0.61 | 3.72% | 0.31% | 0.01% |
1 × 10−5 | 0.61 | 3.73% | 0.32% | 0.01% | |
1 × 10−10 | 0.67 | 4.31% | 0.47% | 0.03% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ham, G.-S.; Oh, K. Learning Spatial Configuration Feature for Landmark Localization in Hand X-rays. Electronics 2023, 12, 4038. https://doi.org/10.3390/electronics12194038
Ham G-S, Oh K. Learning Spatial Configuration Feature for Landmark Localization in Hand X-rays. Electronics. 2023; 12(19):4038. https://doi.org/10.3390/electronics12194038
Chicago/Turabian StyleHam, Gyu-Sung, and Kanghan Oh. 2023. "Learning Spatial Configuration Feature for Landmark Localization in Hand X-rays" Electronics 12, no. 19: 4038. https://doi.org/10.3390/electronics12194038
APA StyleHam, G. -S., & Oh, K. (2023). Learning Spatial Configuration Feature for Landmark Localization in Hand X-rays. Electronics, 12(19), 4038. https://doi.org/10.3390/electronics12194038